【廣告】
中考數(shù)學解題實用方法
換元法
換元法是數(shù)學中一個非常重要而且應用十分廣泛的解題方法。我們通常把未知數(shù)或變數(shù)稱為元,所謂換元法,就是在一個比較復雜的數(shù)學式子中,用新的變元去代替原式的一個部分或改造原來的式子,使它簡化,使問題易于解決。
判別式法與韋達定理
一元二次方程ax2 bx c=0(a、b、c屬于R,a≠0)根的判別,△=b2-4ac,不僅用來判定根的性質,而且作為一種解題方法,在代數(shù)式變形,解方程(組),解不等式,研究函數(shù)乃至幾何、三角運算中都有非常廣泛的應用。
韋達定理除了已知一元二次方程的一個根,求另一根;已知兩個數(shù)的和與積,求這兩個數(shù)等簡單應用外,還可以求根的對稱函數(shù),計論二次方程根的符號,解對稱方程組,以及解一些有關二次曲線的問題等,都有非常廣泛的應用。
反證法
反證法是一種間接證法,它是先提出一個與命題的結論相反的假設,然后,從這個假設出發(fā),經過正確的推理,導致矛盾,從而否定相反的假設,達到肯定原命題正確的一種方法。這類方法在近年來的中考題中常被運用于探索規(guī)律性的問題,此類題的主要解法是運用不完全歸納法,通過試驗、猜想、試誤驗證、總結、歸納等過程使問題得解。反證法可以分為歸謬反證法(結論的反面只有一種)與窮舉反證法(結論的反面不只一種)。用反證法證明一個命題的步驟,大體上分為:(1)反設;(2)歸謬;(3)結論。
反設是反證法的基礎,為了正確地作出反設,掌握一些常用的互為否定的表述形式是有必要的,例如:是/不是;存在/不存在;平行于/不平行于;垂直于/不垂直于;等于/不等于;大(小)于/不大(小)于;都是/不都是;至少有一個/一個也沒有;至少有n個/至多有(n一1)個;至多有一個/至少有兩個;至少有兩個。因式分解是恒等變形的基礎,它作為數(shù)學的一個有力工具、一種數(shù)學方法在代數(shù)、幾何、三角等的解題中起著重要的作用。
歸謬是反證法的關鍵,導出矛盾的過程沒有固定的模式,但必須從反設出發(fā),否則推導將成為無源之水,無本之木。推理必須嚴謹。導出的矛盾有如下幾種類型:與已知條件矛盾;與已知的公理、定義、定理、公式矛盾;與反設矛盾;自相矛盾。
中考沖刺復習重點:
關于數(shù)學:
學數(shù)學不能僅靠老師教,更要靠自己主動去理解、掌握。
自己要積極主動地發(fā)現(xiàn)問題,注重新舊知識間的內在聯(lián)系,不滿足于現(xiàn)成的思路和結論,經常進行一題多解、一題多變的練習。
只看書不做題不行,只埋頭做題不總結積累也不行。學生對課本知識既要能鉆進去,又要能跳出來,結合自身特點,找到很好的學習方法。
不但語文要記筆記,數(shù)學也要記筆記。特別是對概念的理解和數(shù)學規(guī)律的總結,對教師課堂中拓展的課外知識也要記下來。
同學們還要記錄本章有價值的思想方法或例題,以及自己存在的未解決問題,以便今后將其補上;把平時容易出錯的知識或推理記下來,以防再犯,通過找錯、改錯達到終防錯的目的。
合并同類項法則是有其理論依據(jù)的。構造法在解題時,我們常常會采用這樣的方法,通過對條件和結論的分析,構造輔助元素,它可以是一個圖形、一個方程(組)、一個等式、一個函數(shù)、一個等價命題等,架起一座連接條件和結論的橋梁,從而使問題得以解決,這種解題的數(shù)學方法,我們稱為構造法。它所依據(jù)的就是大家早已熟知了的乘法分配律,a(b c)=ab ac。合并同類項實際上就是乘法分配律的逆向運用。即將同類項中的每一項都看成兩個因數(shù)的積,由于各項中都含有相同的字母并且它們的指數(shù)也分別相同,故同類項中的每項都含有相同的因數(shù)。合并時將分配律逆向運用,用相同的那個因數(shù)去乘以各項中另一個因數(shù)的代數(shù)和。
把多項式中同類項合成一項,叫做合并同類項。