人臉識別系統(tǒng)的研究始于20世紀(jì)60年代,80年代后隨著計(jì)算機(jī)技術(shù)和光學(xué)成像技術(shù)的發(fā)展得到提高,而真正進(jìn)入初級的應(yīng)用階段則在90年后期,并且以美國、德國和日本的技術(shù)實(shí)現(xiàn)為主;人臉識別系統(tǒng)成功的關(guān)鍵在于是否擁有的核心算法,并使識別結(jié)果具有實(shí)用化的識別率和識別速度;“人臉識別系統(tǒng)”集成了人工智能、機(jī)器識別、機(jī)器學(xué)習(xí)、模型理論、專家系統(tǒng)、視頻圖像處理等多種專業(yè)技術(shù),同時(shí)需結(jié)合中間值處理的理論與實(shí)現(xiàn),是生物特征識別的應(yīng)用,其核心技術(shù)的實(shí)現(xiàn),展現(xiàn)了弱人工智能向工智能的轉(zhuǎn)化。
人臉識別系統(tǒng)主要包括四個(gè)組成部分,分別為:人臉圖像采集及檢測、人臉圖像預(yù)處理、人臉圖像特征提取以及匹配與識別。人臉圖像采集及檢測人臉圖像采集:不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態(tài)圖像、動態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時(shí),采集設(shè)備會自動搜索并拍攝用戶的人臉圖像。
基于光照估計(jì)模型理論提出了基于Gamma灰度矯正的光照預(yù)處理方法,并且在光照估計(jì)模型的基礎(chǔ)上,進(jìn)行相應(yīng)的光照補(bǔ)償和光照平衡策略。優(yōu)化的形變統(tǒng)計(jì)校正理論基于統(tǒng)計(jì)形變的校正理論,優(yōu)化人臉姿態(tài);強(qiáng)化迭代理論強(qiáng)化迭代理論是對DLFA人臉檢測算法的有效擴(kuò)展;獨(dú)創(chuàng)的實(shí)時(shí)特征識別理論該理論側(cè)重于人臉實(shí)時(shí)數(shù)據(jù)的中間值處理,從而可以在識別速率和識別效能之間,達(dá)到的匹配效果

現(xiàn)有的人臉識別系統(tǒng)在用戶配合、采集條件比較理想的情況下可以取得令人滿意的結(jié)果。但是,在用戶不配合、采集條件不理想的情況下,現(xiàn)有系統(tǒng)的識別率將陡然下降。比如,人臉比對時(shí),與系統(tǒng)中存儲的人臉有出入,例如剃了胡子、換了發(fā)型、多了眼鏡、變了表情都有可能引起比對失敗。優(yōu)勢困難優(yōu)勢人臉識別的優(yōu)勢在于其自然性和不被被測個(gè)體察覺的特點(diǎn)。