【廣告】
國內外SPS的發(fā)展與應用狀況
國內外SPS的發(fā)展與應用狀況
SPS技術是在粉末顆粒間直接通入脈沖電流進行加熱燒結,因此在有的文獻上也被稱為等離子活化燒結或等離子輔助燒結(plasmaactivatedsintering-PAS或plasma-assistedsintering-PAS)[1,2]。早在1930年,美國科學家就提出了脈沖電流燒結原理,但是直到1965年,脈沖電流燒結技術才在美、日等國得到應用。另外,還已發(fā)現(xiàn)晶粒隨SPS燒結溫度變化比較緩慢[7],因此SPS制備納米材料的機理和對晶粒長大的影響還需要做進一步的研究。日本獲得了SPS技術的專利,但當時未能解決該技術存在的生產效率低等問題,因此SPS技術沒有得到推廣應用。
1988年日本研制出第yi臺工業(yè)型SPS裝置,并在新材料研究領域內推廣使用。1990年以后,日本推出了可用于工業(yè)生產的SPS第三代產品,具有10~100t 的燒結壓力和脈沖電流5000~8000A。近又研制出壓力達500t,脈沖電流為25000A的大型SPS裝置。而等離子體的另一個很有潛力的應用領域是在陶瓷材料的燒結方面[1]。由于SPS技術具有快速、低溫、gao效率等優(yōu)點,近幾年國外許多大學和科研機構都相繼配備了SPS燒結系統(tǒng),并利用SPS進行新材料的研究和開發(fā)[3]。1998年瑞典購進SPS燒結系統(tǒng),對碳化物、氧化物、生物陶瓷等材料進行了較多的研究工作[4]。
國內近三年也開展了用SPS技術制備新材料的研究工作[1,3],引進了數臺SPS燒結系統(tǒng),主要用來燒結納米材料和陶瓷材料[5~8]。SPS作為一種材料制備的全新技術,已引起了國內外的廣泛重視。
粉末冶金廠納米材料
致密納米材料的制備越來越受到重視。利用傳統(tǒng)的熱壓燒結和熱等靜壓燒結等方法來制備納米材料時,很難保證能同時達到納米尺寸的晶粒和完全致密的要求。利用SPS技術,由于加熱速度快,燒結時間短,可顯著抑制晶粒粗化。成型的目的是制得一定形狀和尺寸的壓坯,并使其具有一定的密度和強度。例如:用平均粒度為5μm的TiN粉經SPS燒結(1963K,196~382MPa,燒結5min),可得到平均晶粒65nm的TiN密實體[3]。文獻[3]中引用有關實例說明了SPS燒結中晶粒長大受到極大限度的抑制,所制得燒結體無疏松和明顯的晶粒長大。
?粉末冶金技術的優(yōu)勢
粉末冶金技術的優(yōu)勢
1、絕大多數難熔金屬和化合物,假合金,多孔材料只能用粉末冶金法制造。
2、由于粉末冶金方法可以壓制成終尺寸的緊湊型,并且不需要或不需要后續(xù)的機械加工,可以大大節(jié)省金屬,降低產品成本。粉末冶金制造的產品,金屬損失僅為1-5%,而在生產中使用的普通鑄造方法,金屬損失可能會達到80%以上。
3、由于粉末冶金技術在生產過程中材料不熔化,不混合由坩堝和脫氧劑引起的雜質,一般在真空和還原氣氛中燒結,不怕氧化,也不會發(fā)生任何物質污染,因此可以制備高純度材料。
4、粉末冶金法可以保證材料組成比的精度和均勻性。
5、粉末冶金適用于生產相同形狀和數量的產品,特別是齒輪等產品的高加工成本,粉末冶金工藝可大大降低生產成本。