【廣告】
荷蘭公司用金屬3D打印制造超級摩托車電機(jī)冷卻
荷蘭超級摩托車制造商Electric Superbike Twente與金屬3D打印公司K3D合作,為其電動自行車的電機(jī)生產(chǎn)新的冷卻外殼。通過熱處理可以使?jié)B碳體呈顆粒狀分布在鐵素體基體上,叫做球狀珠光體或粒狀珠光體。這是Electric Superbike Twente使用的一款3D打印金屬組件,在此前的產(chǎn)品開發(fā)中,他們意識到使用傳統(tǒng)技術(shù)生產(chǎn)的電機(jī)冷卻外殼并不適合高性能摩托車,因此雙方在設(shè)計(jì)第二輛電動摩托車后不久就開始合作。
傳統(tǒng)制造的局限性
超級摩托車團(tuán)隊(duì)的技術(shù)經(jīng)理Feitse Krekt 評論說:“首輛超級摩托車的冷卻外殼由多個部件組成,這些部件使用傳統(tǒng)的生產(chǎn)方法,如車削和銑削,很難生產(chǎn)。對于這些生產(chǎn)方法,需要大量的材料,因此最終產(chǎn)品變得非常沉重?!罟钊绻蟮墓罹o密時,由于需要后續(xù)加工,MIM的成本趨向于增加,燒結(jié)件的公差大概在±0。而且另外一個問題是,由于車削過程,壁厚需要高于常規(guī),我們無法盡可能高效地冷卻電動機(jī)。所以,電機(jī)的功率低于預(yù)期,有時需要放慢速度以使電動機(jī)不會過熱?!?
因此,超級摩托車決定聯(lián)系K3D,K3D是荷蘭一家從Additive Industries購買了metalFab1 金屬3D打印機(jī)的公司,自2016年以來已生產(chǎn)超過35,000種產(chǎn)品。
△用于生產(chǎn)冷卻外殼的metalFab1 3D金屬打印機(jī)
K3D的首席技術(shù)官Jaap Bulsink解釋說,使用K3D生產(chǎn)的部件使他們能夠享受傳統(tǒng)制造技術(shù)無法提供的設(shè)計(jì)自由,“由于采用薄壁設(shè)計(jì),內(nèi)部通道具有zui佳的冷卻性能,只有金屬3D打印才能實(shí)現(xiàn)極佳設(shè)計(jì)自由度。四、金屬熱處理的第四把火——回火:1、回火為了降低鋼件的脆性,將淬火后的鋼件在高于室溫而低于710℃的某一適當(dāng)溫度進(jìn)行長時間的保溫,再進(jìn)行冷卻,這種工藝稱為回火。重要的是,該部件的設(shè)計(jì)重量最輕。該部件打印非常準(zhǔn)確,無需任何后處理即可直接使用?!?
這不是3D打印初次用于制造電動摩托車。發(fā)黑處理現(xiàn)在常用的方法有傳統(tǒng)的堿性加溫發(fā)黑和出現(xiàn)較晚的常溫發(fā)黑兩種。總部位于德國的BigRep已經(jīng)制造出功能齊全的3D打印電動摩托車,但該自行車僅用于設(shè)計(jì)目的,目前還不是一種可行的商業(yè)產(chǎn)品。另外,寶馬今年早些時候推出了3D打印概念車架,用于BMW S1000RR運(yùn)動自行車。
電動超級摩托車目前正在組裝,之后將于2019年5月24日在荷蘭恩斯赫德進(jìn)行測試并最終曝光。
金屬粉末增塑擠壓成型與注射成形工藝比較
粉末冶金技術(shù)發(fā)展到今天已經(jīng)有了不少的分支和不同的工藝,在這其中zui具有代表性的兩種工藝非增塑擠壓成型和注射成形莫屬了,雖然同屬于粉末冶金,但是它們又有很多不同,今天就讓小編帶大家一起來了解一下吧。
先來看看金屬粉末增塑擠壓成形工藝,這是一種在金屬粉末包套擠壓等工藝的基礎(chǔ)上發(fā)展而來的,可以在較低的溫度下對具有優(yōu)良流動性的銅、鎢、硬質(zhì)合金、高熔點(diǎn)金屬間化合物以及陶瓷材料進(jìn)行擠壓成形的新工藝。目前該工藝已經(jīng)有了專用的連續(xù)擠壓設(shè)備。鐵素體含碳量很低,其性能接近純鐵,是一種塑性、韌性高和強(qiáng)度、硬度低的組織。該工藝過程使用的物料是添加了一定量增速劑的具有優(yōu)良流動性的金屬粉末。利用該工藝生產(chǎn)的坯件,在經(jīng)過干燥、燒結(jié)之后就可以成為最終成品了。
再來看一下另外一種新型的金屬零部件成形工藝—金屬注射成形。MIM(metalInjectionMolding,金屬注射成型)雖然是一個小行業(yè),相關(guān)從業(yè)人員不超過幾百萬。它是將傳統(tǒng)的粉末冶金和現(xiàn)代塑料注塑技術(shù)相結(jié)合并依托于粘結(jié)劑配方研發(fā)和喂料生產(chǎn)技術(shù)的一種近凈成形工藝。它是一種發(fā)展歷史久遠(yuǎn)但發(fā)展速度緩慢的成形工藝,該工藝的基本流程就是將金屬粉末和粘結(jié)劑的混合物在一定的溫度和壓力條件xia注入特定的模腔中得到接近最終產(chǎn)品尺寸和形狀的坯件,再對坯件進(jìn)行脫粘、燒結(jié)得到具備一定機(jī)械性能的最終成品的過程。
通過以上的描述可以看出,粉末增塑擠壓成形與注射成形有很多相同的優(yōu)點(diǎn),所以近幾年這兩種工藝都得到了迅猛發(fā)展,兩者共同的優(yōu)點(diǎn)總結(jié)一下有四點(diǎn):近凈成形,都可以一次成形最接近制品最終形狀的坯件;利用傳統(tǒng)的鑄造、機(jī)加工等防范難以生產(chǎn)的形狀的金屬制品,尤其是小型復(fù)雜零件和細(xì)長零件的成形中占有很大優(yōu)勢;可適用的材料范圍都相當(dāng)廣泛,一些用常規(guī)辦法不好制備成品的材料都可以采用此兩種方法;該兩種方法可以作為新材料及其產(chǎn)品的新的研發(fā)方法。粉末燒結(jié)氣氛是指粉末冶金制品在燒結(jié)時,燒結(jié)爐內(nèi)的實(shí)際氣氛,常用的燒結(jié)氣氛主要有保護(hù)氣氛、可控氣氛和空氣。
兩者一個顯著共同點(diǎn)是都要使用粘結(jié)劑。從粘結(jié)劑的選用及配方上來看,兩者采用的粘結(jié)劑都可以歸為三大體系,蠟基、jia基纖維素基和塑基,用量上也差不多,都在在8%~20%的質(zhì)量比范圍。從工藝上來看,都要在坯件成形以后進(jìn)行粘結(jié)劑的徹底脫除。
但是兩者也有很明顯的不同,在原料上,增塑擠壓成形使用的金屬粉末粒度變化區(qū)間比較大,從幾微米到幾百微米都可以使用;而金屬注射成形對金屬粉末的要求比較高,粉末的粒度一般在0.5-20微米之間,對粉末制備方法和粉末形狀有著更高的要求,因此成形后的制品更致密,燒結(jié)時收縮率小,尺寸精度更高。在傳動過程中,可由電機(jī)同步轉(zhuǎn)速,經(jīng)彈性聯(lián)軸器至減速機(jī)后,由輸出裝置傳動快漿,使其達(dá)到規(guī)定的轉(zhuǎn)速,也可由變頻器進(jìn)行調(diào)速。
如果要說兩者的差異的話,成形設(shè)備和物料受力的的不同是其另外一個顯著的區(qū)別,增塑擠壓成形采用的是專用螺桿擠壓成形機(jī),物料處于兩向壓縮和一向擠出拉伸的變形,其中的擠壓力一般不會超過300Mpa;而注射成形采用的注射成形機(jī),在成形過程中物料受到的是三向壓應(yīng)力,其變形是三向力的壓縮變形。步驟如下﹕1使表面粗糙度達(dá)到一定要求﹐可通過表面磨光﹐拋光等工藝方法來實(shí)現(xiàn)。
通過兩者共同點(diǎn)和不同點(diǎn)的比較,我們認(rèn)識到,兩者都是當(dāng)今粉末冶金技術(shù)新的發(fā)展方向,都可以在成形難加工材料的小尺寸復(fù)雜形狀制品方面發(fā)揮優(yōu)勢,如果在精密度要求不是特別高的情況下可以采用增塑擠壓成形工藝以降低生產(chǎn)成本,而精密度要求高的制品的成形則只能通過對粉末粒度要求嚴(yán)格的金屬粉末注射成形來實(shí)現(xiàn)。,效率高,其缺陷是光明度差,有氣體溢出,須要通風(fēng)設(shè)備,加溫艱難。
粉末冶金MIM工藝相比傳統(tǒng)精鑄工藝的優(yōu)勢
MIM使用的原料粉末粒度直徑為2—15urn,而傳統(tǒng)粉末冶金(PM)的原料粉末粒度為50—100urn。MIM工藝的成品密度高,原因是使用微細(xì)粉末。MIM產(chǎn)品形狀自由度是PM所不能達(dá)到的。
傳統(tǒng)的精密鑄造(IC)工藝作為一種制作復(fù)雜形狀產(chǎn)品極有效的技術(shù),近年使用陶心輔助可以完成狹縫、深孔穴的產(chǎn)品,但礙于陶心的強(qiáng)度以及鑄液的流動性限制,該工藝仍有某些技術(shù)上的難題。捏合機(jī)可制成普通型、壓力型、真空型、高溫型四種,調(diào)溫形式采用夾套、蒸汽加熱、油加熱、水冷卻等方法,采用液壓翻缸及啟蓋。一般而言,此工藝制造大、中型零件較為合適,而小型復(fù)雜零件則MIM工藝較為合適,而且IC工藝材質(zhì)受到一定限制。
壓鑄工藝適用于鋁和鋅合金等低熔點(diǎn)、鑄流性好的材料,而MIM工藝適合各種材質(zhì)。
精密鍛造可以成型復(fù)雜零件,但不能成型三維復(fù)雜的小型零件,其產(chǎn)品的精度低,產(chǎn)品有局限。
傳統(tǒng)機(jī)械加工法:近來靠自動化和數(shù)控提升加工能力,在效率和精度上有很大的進(jìn)展,但是基本的程序上仍脫不開逐步加工車、刨、銑、磨、鉆、拋等完成零件形狀的方式,機(jī)械加工的方法精度和復(fù)雜度遠(yuǎn)優(yōu)于其他方法,但是因?yàn)椴牧系挠行Ю寐实停倚螤畹耐瓿墒芟抻谠O(shè)備與刀具,有些零件無法用機(jī)械加工完成。MIM技術(shù)是目前金屬零部件成型最科學(xué)的精凈成型技術(shù),其特點(diǎn)在于成本低,性能優(yōu)異,可根據(jù)不同需求靈活調(diào)整各項(xiàng)性能指數(shù),應(yīng)用領(lǐng)域非常廣泛。相反,MIM可以有效利用材料,形狀自由度不受限制。對于小型、復(fù)雜、高難度形狀的精密零件的制造,MIM工藝比較機(jī)械式加工而言,其成本較低且效率高,具有競爭力。