【廣告】
掃描隧道顯微鏡的工作情況
AFM的工作情況 掃描隧道顯微鏡在工作時,就如同一根唱針掃過一張唱片,一根探針慢慢地接近要被分析的材料(針尖極為尖銳,僅僅由一個原子組成)。一個小小的電荷被放置在探針上,一股電流從探針流出,通過整個材料,到底層表面。當探針通過單個的原子,流過探針的電流量便有所不同,這些變化被記錄下來。通過繪出電流量的波動,人們可以得到組成一個網(wǎng)格結構的原子的美麗圖片。 帶你了解現(xiàn)代科研中的顯微鏡 STM使人類次能夠實時地觀察單個原子在物質表面的排列狀態(tài)和與表面電子行為有關的物化性質,在表面科學、材料科學、生命科學等領域的研究中有著重大的意義和廣泛的應用前景,被國際科學界公認為20世紀80年代世界十大科技成就之一。
電子顯微鏡的誕生人們對光的認識也在不斷深化
電子顯微鏡的誕生 人們對光的認識也在不斷深化。1864年,麥克斯韋把全部電磁現(xiàn)象歸結為一組數(shù)學方程,推論出自然界存在電磁波,指出光只是波長在一個很小范圍內的特殊的電磁波。 顯微鏡的演化史,先有放大鏡才有了顯微鏡,清晰的看微觀生物世界 1878年人們認識到,光學顯微鏡的分辨率在理論上是有限度的??茖W家知道,為了提高分辨率,必須采用波長更短的“輻射”來照射樣品。1905年,26歲的愛因斯坦發(fā)表了題為《關于光的產(chǎn)生和轉化的一個啟發(fā)性觀點》的,揭示了光子的波粒二象性。1921年,愛因斯坦獲得諾貝爾物理學獎,就是因為這篇的成就。1923年夏天,32歲的德布羅意提出,一切實物粒子都具有波動性;1924年,他給出物質波波長的計算公式,實物粒子動量越大,它的波長就越短。德布羅意獲得1929年諾貝爾物理學獎。
現(xiàn)代電子顯微鏡可以分辨物體上距離0
電子顯微鏡的革命性在于,它用電子數(shù)代替了光學照明。在受到50~100千伏電壓的加速后,電子的波長為0.53~0.37納米,大致等于光波長的l/1000。根據(jù)兩者波長的關系,大家可以推測,電子顯微鏡的分辨率會比光學顯微鏡高得多?,F(xiàn)代電子顯微鏡可以分辨物體上距離0.2納米的兩個點,是光學顯微鏡的1/1000。借助電子顯微鏡,人們能夠觀察金屬的晶體結構、蛋白質分子、細胞和病毒的結構。電子顯微鏡的發(fā)明,推動了生物學的研究。