【廣告】
人工智能控制器
但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實(shí)際應(yīng)用的例子(學(xué)術(shù)研究組實(shí)現(xiàn)少,工業(yè)運(yùn)用的就更少了),大多數(shù)研究只給出了理論或結(jié)果,因此,常規(guī)控制器在將來仍要使用相當(dāng)長一段時(shí)間。為此,本文論述了人工智能在電氣傳動(dòng)領(lǐng)域中的應(yīng)用。將PID控制和模糊控制相結(jié)合,控制直流電動(dòng)機(jī).首先對直流電動(dòng) 機(jī)的PID控制進(jìn)行,鑒于其參數(shù)變化范圍大,整定過程繁鎖
與驅(qū)動(dòng)器的特性無關(guān)。現(xiàn)在沒有使用人工智能的控制算法對特定對象控制效果十分好,但對其他控制對象效果就不會(huì)一致性地好,因此對必須具體對象具體設(shè)計(jì)。它們對新數(shù)據(jù)或新信息具有很好的適應(yīng)性。它們能解決常規(guī)方法不能解決的問題。它們具有很好的抗噪聲干擾能力。它們的實(shí)現(xiàn)十分便宜,特別是使用小配置時(shí)。 它們很容易擴(kuò)展和修改。
誤差反向傳播技術(shù)是多層前聵ANN常用的學(xué)習(xí)技術(shù)。如果網(wǎng)絡(luò)有足夠多的隱藏層和隱藏結(jié)點(diǎn)以及適宜的激勵(lì)函數(shù),多層ANN只能實(shí)現(xiàn)需要的映射,沒有直接的技術(shù)選擇優(yōu)隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),通常用嘗試法解決這個(gè)問題,反向傳播訓(xùn)練算法是基本的快下降法,輸出結(jié)點(diǎn)的誤差反饋回網(wǎng)絡(luò),用于權(quán)重調(diào)整,搜索優(yōu)。
由于控制簡單,直流傳動(dòng)在過去得到了廣泛的使用。但由于它們眾所周知的限制以及DSP技術(shù)的進(jìn)步,直流傳動(dòng)正逐漸被的交流傳動(dòng)所取代。但近,許多廠商也推出了一些改進(jìn)的直流驅(qū)動(dòng)產(chǎn)品充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實(shí)現(xiàn),往往通過改造現(xiàn)有古典控制器得以實(shí)現(xiàn),如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數(shù),從而使系統(tǒng)的性能得到提高