【廣告】
人工智能控制器
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫(kù)和隸屬函數(shù)在模糊化和反模糊化過(guò)程中能夠自動(dòng)地實(shí)時(shí)確定。有很多方法來(lái)實(shí)現(xiàn)這個(gè)過(guò)程,但主要的目標(biāo)是使用系統(tǒng)技術(shù)實(shí)現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速。模糊邏輯控制應(yīng)用 主要有兩類(lèi)模糊控制器,Mamdani和Sugeno型。到目前為止只有Mamdani模糊控制器用于調(diào)速控制系統(tǒng)中。
在各種出版物中,介紹了許多被模糊化的控制器,但這應(yīng)與“充分模糊”控制器完全區(qū)分開(kāi)來(lái),“充分模糊”控制器才是完全意義上的模糊控制器,被模糊化的控制器易于實(shí)現(xiàn),往往通過(guò)改造現(xiàn)有古典控制器得以實(shí)現(xiàn),如被模糊化的PI控制器(FPIC)使用模糊邏輯改變控制器的比例、積分參數(shù),從而使系統(tǒng)的性能得到提高
運(yùn)用常規(guī)反向傳播學(xué)習(xí)算法。該系統(tǒng)由兩個(gè)子系統(tǒng)構(gòu)成,一個(gè)系統(tǒng)通過(guò)電氣動(dòng)態(tài)參數(shù)的辯識(shí)自適應(yīng)控制定子電流,另一個(gè)系統(tǒng)通過(guò)對(duì)機(jī)電系統(tǒng)參數(shù)的辯識(shí)自適應(yīng)控制轉(zhuǎn)子速度。后值得指出的是現(xiàn)在發(fā)表的大多數(shù)有關(guān)ANN對(duì)各種電機(jī)參數(shù)估計(jì)的,一個(gè)共同的特點(diǎn)是,它們都是用多層前饋ANNS,用常規(guī)反向傳播算法,只是學(xué)習(xí)算法的模型不同或被估計(jì)的參數(shù)不同。
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫(kù)和隸屬函數(shù)在模糊化和反模糊化過(guò)程中能夠自動(dòng)地實(shí)時(shí)確定。,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計(jì)的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類(lèi)非線性函數(shù)近似器。