OCR (Optical Character Recognition,光學字符識別)是指電子設備(例如掃描儀或數(shù)碼相機)檢查紙上打印的字符,通過檢測暗、亮的模式確定其形狀,然后用字符識別方法將形狀翻譯成計算機文字的過程;即,針對印刷體字符,采用光學的方式將紙質(zhì)文檔中的文字轉(zhuǎn)換成為黑白點陣的圖像文件,并通過識別軟件將圖像中的文字轉(zhuǎn)換成文本格式,供文字處理軟件進一步編輯加工的技術。如何除錯或利用輔助信息提高識別正確率,是OCR的課題,ICR(Intelligent Character Recognition)的名詞也因此而產(chǎn)生。衡量一個OCR系統(tǒng)性能好壞的主要指標有:拒識率、誤識率、識別速度、用戶界面的友好性,產(chǎn)品的穩(wěn)定性,易用性及可行性等。

早在60、70年代,世界各國就開始有OCR的研究,而研究的初期,多以文字的識別方法研究為主,且識別的文字僅為0至9的數(shù)字。以同樣擁有方塊文字的日本為例,1960年左右開始研究OCR的基本識別理論,初期以數(shù)字為對象,直至1965至1970年之間開始有一些簡單的產(chǎn)品,如印刷文字的郵政編碼識別系統(tǒng),識別郵件上的郵政編碼,幫助郵局作區(qū)域分信的作業(yè);也因此至今郵政編碼一直是各國所倡導的地址書寫方式。

影像預處理:影像預處理是OCR系統(tǒng)中,須解決問題的一個模塊。影像須先將圖片、表格及文字區(qū)域分離出來,甚至可將文章的編排方向、文章的提綱及內(nèi)容主體區(qū)分開,而文字的大小及文字的字體亦可如原始文件一樣的判斷出來。對待識別圖像進行如下預處理,可以降低特征提取算法的難度,并能提高識別的精度。二值化:由于彩像所含信息量過于巨大,在對圖像中印刷體字符進行識別處理前,需要對圖像進行二值化處理,使圖像只包含黑色的前景信息和白色的背景信息,提升識別處理的效率和度。