【廣告】
在煙草烘干風(fēng)機(jī)機(jī)械中,為了防止旋轉(zhuǎn)葉片和固定殼體之間的摩擦,葉片頂部和殼體之間必須有一定的間隙。由于葉尖間隙的存在,不可避免地會(huì)發(fā)生泄漏流。泄漏流與主流相互作用形成的泄漏渦將影響渦輪機(jī)械的內(nèi)部流場(chǎng)和氣動(dòng)性能,尤其是效率、煙草烘干風(fēng)機(jī)噪聲和穩(wěn)定的工作范圍。因此,通過(guò)改變?nèi)~頂間隙形狀,對(duì)葉頂泄漏流進(jìn)行綜合分析,提高渦輪機(jī)械的氣動(dòng)性能具有重要的現(xiàn)實(shí)意義和工程參考價(jià)值。目前,對(duì)葉尖間隙進(jìn)行了一系列的實(shí)驗(yàn)和數(shù)值模擬研究,主要集中在葉尖和殼體兩個(gè)方面。對(duì)于葉片頂部,Young等人[4]采用實(shí)驗(yàn)方法研究了單槽、雙槽和上斜面對(duì)渦輪性能的影響。從出口段附面層的邊界形狀可以看出,復(fù)合三維葉片試圖使葉片的徑向附面層均勻化,消除了葉片角部區(qū)域的低能流體積聚,對(duì)提高葉片邊緣起到了明顯的作用。在此基礎(chǔ)上,模擬了煙草烘干風(fēng)機(jī)、類型和位置對(duì)軸流風(fēng)機(jī)性能的影響,指出在設(shè)計(jì)流量下,葉頂雙槽結(jié)構(gòu)具有較佳的氣動(dòng)性能,風(fēng)機(jī)效率提高了1.05個(gè)百分點(diǎn)。對(duì)多級(jí)壓縮機(jī)表明,葉根倒角還可以減小角區(qū)的失速,提高工作范圍。煙草烘干風(fēng)機(jī)帶肩端間隙渦輪的研究表明,壓力側(cè)和吸入側(cè)后緣槽都可以略微增大葉片頂面?zhèn)鳠嵯禂?shù),但吸入側(cè)后緣槽可以減小間隙的泄漏損失。
煙草烘干風(fēng)機(jī)四種不同結(jié)構(gòu)尺寸的半圓形軸縫。模擬和試驗(yàn)結(jié)果表明,軸向縫處理技術(shù)不僅能達(dá)到穩(wěn)定膨脹效果,而且能在設(shè)計(jì)速度下提率和壓力比。套管壁環(huán)對(duì)簡(jiǎn)單煙草烘干風(fēng)機(jī)性能的影響。結(jié)果表明,環(huán)形結(jié)構(gòu)能有效地削弱葉頂間隙渦,甚至抑制其產(chǎn)生,有效地提高了風(fēng)機(jī)的總壓和效率。全冠、部分冠和加強(qiáng)型部分冠對(duì)煙草烘干風(fēng)機(jī)氣動(dòng)性能的影響。結(jié)果表明,部分冠形能削弱泄漏流和二次流的強(qiáng)度,與全冠形相比,部分冠形的效率提高了0.6%。Satish Koyyalamudi和Nagpurwala[17]對(duì)離心式壓縮機(jī)的導(dǎo)葉進(jìn)行了處理。詳細(xì)研究了流量系數(shù)、反力等設(shè)計(jì)參數(shù)的影響規(guī)律,給出了相應(yīng)的選擇原則。結(jié)果表明,改進(jìn)后的壓氣機(jī)峰值效率降低了0.8%~1%,失速裕度提高了18%,阻塞流量提高了9.5%。葉頂間隙形態(tài)的研究主要集中在離心式、軸流式壓縮機(jī)和渦輪上,而葉頂間隙形態(tài)對(duì)軸流風(fēng)機(jī)特別是動(dòng)葉可調(diào)軸流風(fēng)機(jī)性能影響的研究相對(duì)較少??紤]到優(yōu)化葉頂間隙形狀可以有效地提高風(fēng)機(jī)的性能,對(duì)OB-84動(dòng)葉可調(diào)軸流風(fēng)機(jī)在均勻間隙、逐漸收縮和逐漸膨脹等六種非均勻間隙下的性能進(jìn)行了三維數(shù)值模擬。比較了不同葉尖間隙形狀下的內(nèi)部流動(dòng)特性、總壓分布和葉輪作用力,分析了漸縮型和漸擴(kuò)型。間隙對(duì)風(fēng)機(jī)性能影響的內(nèi)在機(jī)理。
GAMBIT軟件用于煙草烘干風(fēng)機(jī)模型建立和網(wǎng)格生成。考慮到煙草烘干風(fēng)機(jī)葉片翼型結(jié)構(gòu)的復(fù)雜性和頂部區(qū)域的三維流動(dòng),首先選擇三角形網(wǎng)格劃分葉片頂部,并利用尺寸函數(shù)對(duì)網(wǎng)格進(jìn)行細(xì)化,以保證煙草烘干風(fēng)機(jī)網(wǎng)格質(zhì)量。其它區(qū)域的網(wǎng)格劃分為動(dòng)葉區(qū)域網(wǎng)格作為參考,采用結(jié)構(gòu)化/非結(jié)構(gòu)化混合網(wǎng)格。為了保證精度和網(wǎng)格獨(dú)立性,對(duì)原風(fēng)機(jī)在216萬(wàn)、245萬(wàn)、286萬(wàn)和337萬(wàn)網(wǎng)格條件下的性能進(jìn)行了模擬。結(jié)果表明,隨著網(wǎng)格數(shù)量的增加,總壓和效率逐漸接近樣本值,337萬(wàn)和286萬(wàn)網(wǎng)格的總壓和效率偏差分別為0.085%和0.024%。綜合模擬精度和網(wǎng)格數(shù)確定了所用的總網(wǎng)格數(shù)。這個(gè)數(shù)字是286萬(wàn)。其中動(dòng)葉面積198萬(wàn)片,集熱器、導(dǎo)葉面積和擴(kuò)壓管網(wǎng)格數(shù)分別為30萬(wàn)片、26萬(wàn)片和32萬(wàn)片。提高效率的原因是加工槽對(duì)壓氣機(jī)葉頂流場(chǎng)產(chǎn)生低頻非定常影響信號(hào)。在模擬葉尖間隙形狀的變化之前,將原始風(fēng)扇的模擬結(jié)果與參考文獻(xiàn)中的煙草烘干風(fēng)機(jī)性能進(jìn)行了比較。結(jié)果表明,在33.31-46.63m3_s-1流量范圍內(nèi),總壓和效率的平均相對(duì)誤差分別為3.0%和1.5%,表明結(jié)果能夠反映風(fēng)機(jī)的實(shí)際性能。
煙草烘干風(fēng)機(jī)葉尖渦度的增大可以有效地阻礙泄漏流的通過(guò),使煙草烘干風(fēng)機(jī)泄漏流與主流混合造成的損失減小,葉片前緣泄漏量的增加小于中、后緣泄漏量的增加。總體上,漏風(fēng)量減少,提高了風(fēng)機(jī)的性能。這與參考文獻(xiàn)中得到的前、后緣對(duì)煙草烘干風(fēng)機(jī)總壓損失系數(shù)的影響是一致的。隨著間隙的逐漸增大,葉頂前部的渦度強(qiáng)度增大,后緣的渦度強(qiáng)度減小,總體變化較小,泄漏量略有增加。葉片吸力前緣中部渦度強(qiáng)度略有增加,沿弦長(zhǎng)方向吸力面中部和后部渦度強(qiáng)度基本不變。煙草烘干風(fēng)機(jī)葉片前緣附近的渦度強(qiáng)度急劇增加。這是由于前緣點(diǎn)高度的變化導(dǎo)致的葉尖流動(dòng)角度的變化。前緣點(diǎn)渦度強(qiáng)度的增加阻礙了吸力面附近的流入,也降低了主流與泄漏流的混合程度。雖然方案6的進(jìn)風(fēng)速度有所降低,但由于葉頂和后緣附近的渦度強(qiáng)度降低,煙草烘干風(fēng)機(jī)效率總體降低,相應(yīng)的泄漏面積和泄漏流量增大。隨著間隙的逐漸增大,葉頂前部的渦度強(qiáng)度增大,后緣的渦度強(qiáng)度減小,總體變化較小,泄漏量略有增加。軸向速度分布可以反映轉(zhuǎn)子葉片流道內(nèi)的流動(dòng)能力和分離尾跡區(qū)的特征。因此,轉(zhuǎn)子葉片出口軸向速度分布的徑向分布如圖6所示,用于分析流量。由于葉根和葉頂端壁附件的附面層較厚,導(dǎo)致流體流過(guò)該區(qū)域后的軸向速度較小,而葉頂附件又因泄漏存在使軸向速度進(jìn)一步減小。