【廣告】
人工智能控制器
建立相匹配的控制模型,同時根據(jù)數(shù)據(jù)實時反饋選擇控制方案,持續(xù)進化,給出優(yōu)控制參數(shù)值。品投運后云端一鍵操作,的簡單背后是強大的算法支持:決策機TMAI可根據(jù)用戶設置的室溫目標數(shù)據(jù),完成復雜運算后直接給出控制目標參數(shù),如供水溫度等。決策機TMAI模型可以解決傳統(tǒng)控制模型中室溫數(shù)據(jù)滯后性問題,結合氣候參數(shù)提前預測、預知合理控制目標值,提前干預,平抑室溫波動。
通過適當調整(根據(jù)響應時間、下降時間、魯棒性能等)它們能提。例如:模糊邏輯控制器的上升時間比優(yōu)PID控制器快1.5倍,下降時間.5倍,過沖更小。它們比古典控制器的調節(jié)容易。在沒有必須知識時,通過響應數(shù)據(jù)也能設計它們。運用語言和響應信息可能設計它們。們有相當好的一致性(當使用一些新的未知輸入數(shù)據(jù)就能得到好的估計)
總而言之,當采用自適應模糊神經(jīng)控制器,規(guī)則庫和隸屬函數(shù)在模糊化和反模糊化過程中能夠自動地實時確定。,隨著現(xiàn)代控制理論的發(fā)展,控制器設計的常規(guī)技術正逐漸被廣泛使用的人工智能軟件技術所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。