【廣告】
人工智能控制器
不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。這樣的分類就能得到較好的總體理解,也有利于控制策略的統(tǒng)一開發(fā)。這些AI函數(shù)近似器比常規(guī)的函數(shù)估計(jì)器具有更多的優(yōu)勢,它們的設(shè)計(jì)不需要控制對象的模型(在許多場合,很難得到實(shí)際控制對象的動態(tài)方程,實(shí)際控制對象的模型在控制器設(shè)計(jì)時往往有很多不確實(shí)性因素,例如:參數(shù)變化,非線性時,往往不知道)。
與驅(qū)動器的特性無關(guān)?,F(xiàn)在沒有使用人工智能的控制算法對特定對象控制效果十分好,但對其他控制對象效果就不會一致性地好,因此對必須具體對象具體設(shè)計(jì)。它們對新數(shù)據(jù)或新信息具有很好的適應(yīng)性。它們能解決常規(guī)方法不能解決的問題。它們具有很好的抗噪聲干擾能力。它們的實(shí)現(xiàn)十分便宜,特別是使用小配置時。 它們很容易擴(kuò)展和修改。
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫和隸屬函數(shù)在模糊化和反模糊化過程中能夠自動地實(shí)時確定。,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計(jì)的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。
有很多方法來實(shí)現(xiàn)這個過程,但主要的目標(biāo)是使用系統(tǒng)技術(shù)實(shí)現(xiàn)穩(wěn)定的解,并且找到的拓樸結(jié)構(gòu)配置,自學(xué)習(xí)迅速,收斂快速,知識庫由數(shù)據(jù)庫和語言控制規(guī)則庫組成。開發(fā)規(guī)則庫的主要方法是:把的知識和經(jīng)歷用于應(yīng)用和控制目標(biāo);建模操作器的控制行動;建模過程;使用自適應(yīng)模糊控制器和人工神經(jīng)網(wǎng)絡(luò)推理機(jī)制。推理機(jī)是模糊控制器的核心