圖像采集像采集卡只是完整的機器視覺系統(tǒng)的一個部件,但是采集卡(2張)它扮演一個非常重要。圖像采集卡直接決定了攝像頭的接口:黑白、彩色、模擬、數(shù)字等等。
比較典型的是PCI或AGP兼容的捕獲卡,可以將圖像迅速地傳送到計算機存儲器進行處理。有些采集卡有內(nèi)置的多路開關(guān)。機器人控制技術(shù),英文robotcontroltechnology。例如,可以連接8個不同的攝像機,然后告訴采集卡采用那一個相機抓拍到的信息。有些采集卡有內(nèi)置的數(shù)字輸入以觸發(fā)采集卡進行,當采集卡抓拍圖像時數(shù)字輸出口就觸發(fā)閘門。
應用案例編輯在布匹的生產(chǎn)過程中,像布匹質(zhì)量檢測這種有高度重復性和智能性的工作只能靠人工檢測來完成,在現(xiàn)代化流水線后面常??煽吹胶芏嗟臋z測工人來執(zhí)行這道工序,給企業(yè)增加巨大的人工成本和管理成本的同時,卻仍然不能保證100 %的檢驗合格率(即“零缺陷”)。對布匹質(zhì)量的檢測是重復性勞動,容易出錯且效率低。流水線進行自動化的改造,使布匹生產(chǎn)流水線變成快速、實時、準確、的流水線。另一方面,環(huán)境光有可能影響圖像的質(zhì)量,所以可采用加防護屏的方法來減少環(huán)境光的影響。在流水線上,所有布匹的顏色、及數(shù)量都要進行自動確認(以下簡稱“布匹檢測”)。采用機器視覺的自動識別技術(shù)完成以前由人工來完成的工作。在大批量的布匹檢測中,用人工檢查產(chǎn)品質(zhì)量效率低且精度不高,用機器視覺檢測方法可以大大提高生產(chǎn)效率和生產(chǎn)的自動化程度。
機器視覺的阿喀琉斯之踵:據(jù)麻省理工《技術(shù)評論》報道,來自谷歌和OpenAI研究所的研究人員發(fā)現(xiàn)了機器視覺算法的一個弱點:機器視覺會被一些經(jīng)過修改的圖像干擾,而人類可以很容易地發(fā)現(xiàn)這些圖像的修改之處。 [7] 應用領(lǐng)域編輯機器視覺的應用主要有檢測和機器人視覺兩個方面:⒈ 檢測:又可分為定量檢測(例如顯微照片的細胞分類、機械零部件的尺寸和位置測量)和不用量器的定性或半定量檢測(例如產(chǎn)品的外觀檢查、裝配線上的零部件識別定位、缺陷性檢測與裝配完全性檢測)。如何使光能在一定的程度上保持穩(wěn)定,是實用化過程中急需要解決的問題。⒉機器人視覺:用于指引機器人在大范圍內(nèi)的操作和行動,如從料斗送出的雜亂工件堆中揀取工件并按一定的方位放在傳輸帶或其他設(shè)備上(即料斗揀取問題)。至于小范圍內(nèi)的操作和行動,還需要借助于觸覺傳感技術(shù)。