【廣告】
隨著汽車在人們的工作、生產(chǎn)和生活中扮演著越來越重要的角色,汽車的保有量也在急速增加。由此帶來的交通管理問題也變得越來越復(fù)雜,智能交通系統(tǒng)的建立是很好的解決問題的方法。而車牌識別技術(shù)在智能交通系統(tǒng)中占有十分重要的地位。停車廠、收費站、生產(chǎn)企業(yè)的門禁管理都有車牌識別技術(shù)的身影。新系統(tǒng)投入運行后,所有進(jìn)出社區(qū)樓層和地下停車場的車輛將由系統(tǒng)自動識別打開大門,司機不需要刷ka就打開門。
在車輛車牌識別技術(shù)中的圖像提取、字符分割起、字符識別過程中,數(shù)字圖像處理技術(shù)起到了重要作用。但由于圖像提取出現(xiàn)場可能存在因時間、光線、天氣的變化而造成的干擾使車牌成像效果較差的問題。所以目前現(xiàn)有的車牌識別系統(tǒng)都存在因環(huán)境變化而產(chǎn)生的識別率變化的問題。在停車場入口處,高速車牌識別集成門的LED顯示屏,實時顯示空車位數(shù),有效期或停車位信息顯示,歡迎訪問等提示。
車牌校正
車牌校正是為了解決拍攝的車牌圖像因為角度問題,導(dǎo)致定位后的車牌傾斜,而傾斜的車牌會給車牌識別系統(tǒng)的后繼步驟增添麻煩,車牌校正是必須的。車牌校正是利用車牌區(qū)域的矩形序列分布同組成車牌號的字母、數(shù)字位置的分布基本一致的特征,找到了矩形序列中矩形左上角像素點排列的近似斜率,從而找出車牌區(qū)域的偏轉(zhuǎn)角度,完成車牌圖像區(qū)域的校正。在實際工作場景中采集到的數(shù)字圖像通常會因為外界環(huán)境、攝像設(shè)備、傳輸線路或保存精度等方面的原因,使其在進(jìn)行預(yù)處理前受到各種噪聲的污染。
基于模板的識別算法由于其處理速度快、識別率高的特點為大多數(shù)設(shè)計所采用。它是把分割后的單個字符區(qū)域與預(yù)置的標(biāo)準(zhǔn)字符集進(jìn)行匹配處理,取標(biāo)準(zhǔn)字符集中相似度的字符作為識別結(jié)果。這種算法的處理步驟是:將單個字符圖像區(qū)域進(jìn)行二值化并改變字符大小,使之與字符集中的字符大小相同,然后再進(jìn)行匹配操作,篩選出相似首先需要有字符模板庫,將待識別的字符進(jìn)行二值化后,將其大小變成字符模板庫中字符大小,然后與庫中的字符進(jìn)行匹配,以相似度的字符為終結(jié)果。因為算法簡單所以算法的速度較快,只要在前期的預(yù)處理中降噪做得比較好,這種算法的識別率也相對較高,是一種簡單、快速、有效的字符識別技術(shù),商用價值較高。一個識別率很高的系統(tǒng),如果需要幾秒鐘,甚至幾分鐘才能識別出結(jié)果,那么這個系統(tǒng)就會因為滿足不了實際應(yīng)用中的實時要求而毫無實用意義。