【廣告】
人工智能控制器
決策機(jī)TMAI模型可以處理大量實(shí)時(shí)性數(shù)據(jù),從數(shù)據(jù)中挖掘系統(tǒng)能耗潛力,給出超出傳統(tǒng)經(jīng)驗(yàn)的控制模式,可進(jìn)一步精細(xì)調(diào)控,即使到了深寒期,依然實(shí)現(xiàn)節(jié)能運(yùn)行。1、以“室”為終:以室溫為控制目標(biāo),穩(wěn)定室溫,平抑波動(dòng);快速調(diào)整、穩(wěn)定室溫,回到供熱的初衷:滿足用戶的室溫舒適。即使到了深寒期,依然實(shí)現(xiàn)節(jié)能運(yùn)行。
人工智能控制器優(yōu)勢(shì)
神“機(jī)”妙算:人工智能AI深度學(xué)習(xí),超越傳統(tǒng)供熱經(jīng)驗(yàn);
大數(shù)據(jù)處理,調(diào)控精細(xì),預(yù)測(cè)準(zhǔn)確,突破人的經(jīng)驗(yàn)盲區(qū)。
一鍵“智”能:傻瓜式操作,簡(jiǎn)單,一鍵操作;
復(fù)雜的事情交給AI,用戶只需制定目標(biāo),操作簡(jiǎn)單明了,降低培訓(xùn)成本。
運(yùn)“策”決機(jī):無需額外設(shè)備,不用施工布線;
設(shè)備安裝簡(jiǎn)單方便,通訊對(duì)接即可使用。
一勞永“逸”:的換熱站人工智能AI升級(jí)改造方式:
云平臺(tái)模式,免監(jiān)控中心,一個(gè)采暖季可收回投資。
誤差反向傳播技術(shù)是多層前聵ANN常用的學(xué)習(xí)技術(shù)。如果網(wǎng)絡(luò)有足夠多的隱藏層和隱藏結(jié)點(diǎn)以及適宜的激勵(lì)函數(shù),多層ANN只能實(shí)現(xiàn)需要的映射,沒有直接的技術(shù)選擇優(yōu)隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),通常用嘗試法解決這個(gè)問題,反向傳播訓(xùn)練算法是基本的快下降法,輸出結(jié)點(diǎn)的誤差反饋回網(wǎng)絡(luò),用于權(quán)重調(diào)整,搜索優(yōu)。
運(yùn)用常規(guī)反向傳播學(xué)習(xí)算法。該系統(tǒng)由兩個(gè)子系統(tǒng)構(gòu)成,一個(gè)系統(tǒng)通過電氣動(dòng)態(tài)參數(shù)的辯識(shí)自適應(yīng)控制定子電流,另一個(gè)系統(tǒng)通過對(duì)機(jī)電系統(tǒng)參數(shù)的辯識(shí)自適應(yīng)控制轉(zhuǎn)子速度。后值得指出的是現(xiàn)在發(fā)表的大多數(shù)有關(guān)ANN對(duì)各種電機(jī)參數(shù)估計(jì)的,一個(gè)共同的特點(diǎn)是,它們都是用多層前饋ANNS,用常規(guī)反向傳播算法,只是學(xué)習(xí)算法的模型不同或被估計(jì)的參數(shù)不同。