非強制性:用戶不需要專門配合人臉采集設備,幾乎可以在無意識的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強制性”;非接觸性:用戶不需要和設備直接接觸就能獲取人臉圖像;
并發(fā)性:在實際應用場景下可以進行多個人臉的分揀、判斷及識別;
除此之外,還符合視覺特性:“以貌識人”的特性,以及操作簡單、結(jié)果直觀、隱蔽性好等特點。
人臉檢測:人臉檢測在實際中主要用于人臉識別的預處理,即在圖像中準確標定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測就是把這其中有用的信息挑出來,并利用這些特征實現(xiàn)人臉檢測。主流的人臉檢測方法基于以上特征采用Adaboost學習算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強的分類方法。

由于視頻監(jiān)控正在快速普及,眾多的視頻監(jiān)控應用迫切需要一種遠距離、用戶非配合狀態(tài)下的快速身份識別技術,以求遠距離快速確認人員身份,實現(xiàn)智能預警。人臉識別技術無疑是的選擇,采用快速人臉檢測技術可以從監(jiān)控視頻圖象中實時查找人臉,并與人臉數(shù)據(jù)庫進行實時比對,從而實現(xiàn)快速身份識別。應用前景生物識別技術已廣泛用于政府、、銀行、社會福利保障、電子商務、安全防務等領域。