【廣告】
粉末注射成型技術彎道超車
粉末注射成型適用不銹鋼,鐵基合金,磁性材料,鎢合金,硬質合金,精細陶瓷等系列。所制備的零件廣泛應用于航空航天工業(yè)、汽車業(yè)、兵工業(yè)、醫(yī)用器械、機械行業(yè)、日用品等領域。那么粉末注射成型和其他成形工藝特點的比較,哪個更具優(yōu)勢呢?
(一)與傳統(tǒng)粉末冶金工藝比較
粉末注射成型作為一種制造高質量精密零件的近凈成形技術,具有常規(guī)粉末冶金方法無法比擬的優(yōu)勢。美國Injectamax公司和德國BASF公司將脫脂時間從數(shù)十小時縮短到幾個小時,而且保形性得到明顯改善,產品的尺寸精度從±0。MIM能制造許多具有復雜形狀特征的零件:如各種外部切槽,外螺紋,錐形外表面,交叉通孔、盲孔,凹臺與鍵銷,加強筋板,表面滾花等等,具有以上特征的零件都是無法用常規(guī)粉末冶金方法得到的。
(二)與比精密鑄造比較
精密鑄造對于熔點相對較低的金屬或合金,精密鑄造也可以成形三維復雜形狀的零件。但對于難熔金屬和合金、硬質合金、金屬陶瓷、陶瓷等卻無能為力,這是精密鑄造的本質所決定的。另外,對于尺寸小、壁薄、大批量的零件采用精密鑄造是十分困難或不可行的。
(三)與機加工比較
傳統(tǒng)機械加工法,近來靠自動化而提升其加工能力,在效率和精度上有極大的進步,但是基本的程序上仍脫不開逐步加工(車削、刨、銑、磨、鉆孔、拋光等)完成零件形狀的方式。
機械加工方法的加工精度遠優(yōu)于其他加工方法,但是因為材料的有效利用率低,且其形狀的完成受限于設備與刀具,有些零件無法用機械加工完成。相反的,粉末注射成型可以有效利用材料,形狀自由度不受限制。電解拋光根底原理與化學拋光雷同,即靠選擇性的溶解材料外表渺小凸出部分,使外表光滑。對于小型、高難度形狀的精密零件的制造,粉末注射成型工藝比較機械加工而言,其成本較低且效率高,具有很強的競爭力。MIM技術彌補了傳統(tǒng)加工方法在技術上的不足或無法制作的缺憾,并非與傳統(tǒng)加工方法競爭。粉末注射成型技術可以在傳統(tǒng)加工方法無法制作的零件領域發(fā)揮其特長。
還原鐵粉已成為制造業(yè)無法替代的高等級材料
還原鐵粉是粉末冶金和軟磁感應器件的基礎原料,其產品由于具有高度的可加工性,可以制成各種超薄、特異形狀器件,具有極強的抗沖擊、抗腐蝕、耐磨損和高強度特性,廣泛地應用于汽車、機械、船舶、機車等領域,是單純靠熔煉制成的鋼鐵材料所無法替代的高等級材料。在早期開發(fā)中,使用傳統(tǒng)潤滑劑,諸如硬脂酸鋅與EBS臘等進行過生產試驗,生坯廢品率高達50%。
此外在變壓器磁芯、電感應器件、優(yōu)質焊條、靜電復印、化工、醫(yī)用、食品保鮮等行業(yè)的應用也日趨廣泛。隨著科學技術的發(fā)展,高純鐵粉的應用領域將越來越廣,使用量也越來越大。
根據分析,還原鐵粉的原始材料是氧化鐵皮,主要是以四氧化三鐵存在的。達克羅中含有對環(huán)境和人體有害的鉻離子,尤其是六價鉻離子具有致癌作用。由于原本的利用氫氣還原產生的效果不是很好,所以改之為用隧道窯選用碳作為還原劑來還原產品,得到的還原效率還是比較高的,因此以碳作為還原劑在一次還原中進行脫氧處置,被廣泛的應用。
由此可見,粉末冶金用還原鐵粉生產工序也是一種一次還原,因此一般都是選用碳即焦末作為還原劑進行還原,形成的為海綿鐵的半成品;形成置換海綿銅鐵粉,當然這還不是最終的產品,還要對其進行破碎處理后再要進行二次還原,這時就可以用氫氣作為還原劑進行還原,得到我們想要的產品。粉末燒結氣氛是指粉末冶金制品在燒結時,燒結爐內的實際氣氛,常用的燒結氣氛主要有保護氣氛、可控氣氛和空氣。
LIGA工藝制造塑料消失模具的兩種方法
LIGA工藝制造塑料消失模具有兩種方法:
一種工藝是用模具成型PMMA塑料模芯,將PMMA塑料模芯嵌入模架直接進行金屬注射成型,PMMA塑料模芯與MIM零件毛坯整體從模架中脫出,MIM零件毛坯留在塑料模芯中直接脫脂、燒結,這成為一步Fu制工藝。
另一種工藝是利用電鑄工藝在PMMA塑料件表面沉積一層金屬鎳,而后將PMMA塑料與鎳殼剝離,再將鎳殼嵌入模架制程金屬模具成型MIM零件毛坯。這成為兩步fu制工藝。
一步fu制工藝成型的零件精度較高,并且解決了零件的脫模及后續(xù)操作等困難,但成本較高;兩步fu制工藝成型的零件精度有所降低,適合批量生產,但存在零件的脫模及后續(xù)操作困難。
金屬粉末充模模擬機理和顆粒模擬的使用
對于多相填充流,人們發(fā)現(xiàn)可以因為剪切力作用,或是顆粒間的相互作用而形成些獨特的結構。特性使得這一現(xiàn)象尤為突出。這就帶來了一些問題,比如:流體是否均勻,流體是否是多相的且每個組分是否都起著獨立的作用來影響整個流體的流動性。通過觀察流道橫截面上的流體可以發(fā)現(xiàn)許多有趣的現(xiàn)象?!罟钊绻蟮墓罹o密時,由于需要后續(xù)加工,MIM的成本趨向于增加,燒結件的公差大概在±0。和中顯示的是橫截面的放大圖,顯示出了相的分離以及年輪一樣的結構。上面圖片中的白色條紋是相分離的一種表征,那里是一些粘結劑中的低熔點組分。在這樣的地方很容易產生裂紋。這種結構明顯表明流體是多相的,甚至可能是類固體的。所以實際上的MIM喂料熔體是非均質的流體,其運動方式和均質流體存在著差異。
在粉末-粘結劑兩相體系中,粉末顆粒和粘結劑之間存在著強烈的相互作用,因此顆粒附近粘結劑的運動將受到一定的限制。在這個模型里,將具有不規(guī)則形狀的粉末簡化為規(guī)則球形的顆粒,每個顆粒周圍包覆著一層粘結劑,這層粘結劑隨顆粒一起運動,即將其看成一個復合單元。69%,熔點約為1227度,晶體結構復雜,硬度很高,脆性極大,幾乎沒有塑性。粘結劑的厚度假定是常數(shù),以此確保系統(tǒng)質量的恒定。盡管這些復合單元的周圍還有自由粘結劑的存在,且其粘性制約了粉末顆粒的運動,還是可將復合單元看成是不受外圍粘結劑介質的影響。
修正顆粒模型顆粒模型較為充分地考慮了MIM喂料的獨特性,可以描述粉末的運動情況,因此這個模型在簡單計算每個粉末顆粒的實際運動情況方面較為精準,但對于實際的三維問題,顆粒模型的微觀分析需要大量的單元,且容易造成計算的發(fā)散。很難將其應用到諸如粉末等微細粉末的分析。理論上,顆粒越細,比表面積也越大,易于成型和燒結傳統(tǒng)的粉末冶金則采用大于40μm的較粗的粉末,傳統(tǒng)壓鑄成形強度低、精密鑄造無法大量量產、車削件成本較高等技術缺點。所以必須對已有的顆粒模型進行一定的修正。展示了通過這種顆粒模型模擬出來的MIM喂料充模的情況。從中可以較清楚地看出密度分布的不均勻性。
結論由于MIM喂料在模腔中的流動可以看成是固-液兩相流動,所以采用傳統(tǒng)的連續(xù)介質模型來進行流動模擬存在較大的偏差。很多研究表明,MIM喂料在充模過程中將發(fā)生粉末和粘結劑分離的現(xiàn)象。例如:提高工具、軸承等的硬度和耐磨性,提高彈簧的彈性極限,提高軸類零件的綜合機械性能等。通過這種方法可以直接考察粉末特性(粒度、粒徑分布、密度和形狀等)對流動過程的影響。從而可以監(jiān)視流動過程中粉末的運動、聚集以及密度變化分布情況和兩相分離等特殊現(xiàn)象。為了簡化三維問題中的計算,還在基于修正顆粒流體動力學的基礎上對該模型進行了修正。