【廣告】
人工智能控制器
也有一些的文章論述運(yùn)用模糊邏輯控制感應(yīng)電機(jī)的磁通和力矩。它的輸入標(biāo)定因子是變化的。實(shí)驗(yàn)結(jié)果也驗(yàn)證了所提方案的有效性。該系統(tǒng)中模糊速度控制器與常規(guī)的PI速度控制器和CRPWM塑變器一起使用,它往往用來(lái)補(bǔ)償可能的慣性和負(fù)載轉(zhuǎn)矩的擾動(dòng)。神經(jīng)網(wǎng)絡(luò)的應(yīng)用 現(xiàn)如今,有大量文章討論神經(jīng)網(wǎng)絡(luò)在交流電機(jī)和驅(qū)動(dòng)系統(tǒng)的條件監(jiān)測(cè)和診斷中的運(yùn)用。
但都沒(méi)有使用人工智能技術(shù)。相信使用人工智能的直流傳動(dòng)技術(shù)能得到進(jìn)一步的提高。智能技術(shù)在電氣傳動(dòng)技術(shù)中占相當(dāng)重要的地位,特別是自適應(yīng)模糊神經(jīng)元控制器在性能傳動(dòng)產(chǎn)品中將得到廣泛應(yīng)用。但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實(shí)際應(yīng)用的例子(學(xué)術(shù)研究組實(shí)現(xiàn)少,工業(yè)運(yùn)用的就更少了),大多數(shù)研究只給出了理論或結(jié)果
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫(kù)和隸屬函數(shù)在模糊化和反模糊化過(guò)程中能夠自動(dòng)地實(shí)時(shí)確定。,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計(jì)的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。