【廣告】
反應釜壓力容器在工作過程中會受到復雜的載荷作用,但基本的設計方針是保證反應釜釜體的在設定的壓力范圍內滿足基本的強度要求及穩(wěn)定性。為此我們在設計之前必須對筒體和上下封頭進行強度計算及穩(wěn)定性校核,以免釜體達不到強度設計要求而失穩(wěn)。三種組合曲線的變化趨勢是一致的,薄膜應力強度加彎曲應力強度和總應力強度的分布曲線基本重合。根據(jù)GB150-1998 內外壓圓筒、封頭強度計算方法,先分別假設內筒體厚度:為δn1=18mm,內下封頭為δn2=16mm。攪拌系統(tǒng)是反應釜工作過程中的重要的一部分,直接關系到物料在反應過程中的充分程度和傳熱過程中的均勻程度,對產品的質量影響至關重要。攪拌器設計由于客戶方使用的介質粘度較高,且使用過程中需要有較好的傳熱效果,所以選擇了錨式攪拌。
開孔邊緣沿接管環(huán)向薄膜應力強度、彎曲應力強度加薄膜應力強度及總應力強度的變化情況為了便于強度評定, 確定應力處理線的位置, 圖7近似給出內貫線上薄膜應力強度、彎曲應力強度加薄膜應力強度及總應力強度的分布曲線。三種組合曲線的變化趨勢是一致的, 薄膜應力強度加彎曲應力強度和總應力強度的分布曲線基本重合。本反應釜采用的是手工鎢極氣體保護焊接,這種焊接方法的質量與母材、焊絲質量及焊接工藝關系極大。這說明確定應力處理線的位置時, 只需確定總應力強度的位置即可。有限元結果強度評定按照JB4732— 95《鋼制壓力容器———分析設計標準》培訓教材, 首先選取了AB, BC兩條處理線;在筒體、封頭相貫線上應力強度位置處, 又選取了DE處理線,分析設計應力失效機理及強度校核, 并以此為依據(jù)對所選應力處理線進行了應力評定, 可以看出所設計的厚度不滿足強度要求, 這說明需要補強設計。
(1)在橢圓封頭與圓筒的連接部位開孔, 孔邊的應力沿圓周分布是較復雜的, 呈起伏變化。該化工反應釜結構優(yōu)化與改進方案是針對其傳統(tǒng)反應釜結構及其作業(yè)影響,能夠有效解決其化工反應中溫度控制困難以及容器內部清洗困難等問題,從而有效防止化工反應釜作業(yè)過程中超壓及腐蝕等問題發(fā)生,確保化工生產的安全性。它們各個方向的應力及各應力分量和應力強度等的變化情形基本是同步的, 即應力強度的部位其薄膜應力強度、薄膜應力 彎曲應力的應力強度也均是。為此按應力強度部位路徑來評定其它兩個應力強度的做法是可行的。
(2)從分析結果可看出, 孔邊各方向的應力、應力分量、應力強度中薄膜應力占有的比重。為此對接管與封頭、筒體的連接焊縫的內部質量檢測是非常必要的, 應補充超聲檢測的要求, 目前對這類焊縫僅作表面檢測是不的。
(3)根據(jù)分析設計標準, 對有限元結果進行強度評定, 結果表明按常規(guī)設計出的頂蓋厚度不滿足強度要求, 所以進行了內部貼補強圈的補強設計。所設計的反應釜頂蓋結構不僅有效地防止了泄漏,避免事故的發(fā)生, 而且降低了設備成本。
反應釜生產廠家的結構和技術參數(shù)
主要技術性能及參數(shù)
反應釜生產廠家外形結構如圖1 所示, 其主要技術
性能與參數(shù)如下:
功率 7.5kW
反應壓力 0.5MPa(max)
液壓控制系統(tǒng)壓力 16MPa(max)
生產率200kg(以干胚乳片計)/ h整機外形尺寸4130mm(高)×1600mm(直徑)質量2500kg.
結構特點
傳動系統(tǒng)
由三相異步電動機和立式行星擺線針輪減速機組成, 安裝在釜體上蓋, 結構緊湊。經多次試驗, 我們確認了攪拌轉速, 可使釜內物料在較短的時間內充分完成改性反應。傳動軸與上蓋間采用聚四氟編織填料密封, 其耐腐蝕、耐磨、導熱性好。