【廣告】
伺服馬達操作不當會出現(xiàn)什么情況
在使用伺服馬達時,在接通電源后,要仔細觀察水泵的運轉情況,出水應連續(xù)均勻,水泵無振動和噪音方可使用。伺服馬達操作不當會出現(xiàn)什么情況?伺服馬達操作不當時會引起燒壞。
為了確保水泵的正常運轉,使用前還應對其檢查一遍。
1、用檢查水泵電機繞組是否斷路。其絕緣情況可用于500伏兆歐表測量,絕緣電阻低于0.5兆歐時,水泵不能使用。
2、卸下過濾網(wǎng),轉動泵軸是否靈活,如不靈活,應調整后方可使用。
3、閘門保險絲容量選擇是否合適,不可用其它導線代替保險絲。
4、接通電源,檢查葉輪運轉是否正常。
只要一個伺服馬達控制器出問題,整臺高速機不能動,整條生產線不能生產。這樣就會對產品的質量有影響甚至也會讓企業(yè)的效益受影響,所以要有伺服馬達維修的應用對策。
關于伺服馬達操作不當會出現(xiàn)什么情況就介紹到這了,如需了解更多,請關注深圳日弘忠信是松下伺服電機,深圳日弘忠信是松下伺服電機代理商,主營松下A6伺服電機、400w/700w松下伺服電機等各型號庫存現(xiàn)貨供應。
松下伺服電機的幾個小常識
1、松下伺服電機選型的問題,究竟什么時候選擇低慣量,什么時候選擇中慣量?
答:通常情況下,為了滿足伺服系統(tǒng)的高響應性,一般松下伺服電機都是選用小慣量的電機,又因為松下伺服電機的額定輸出力矩(或額定輸出功率)越大一般其轉子轉動慣量也越大,所以單純討論電機轉動慣量的大小是沒有意義的,真正應該討論的是松下伺服電機的額定輸出力矩與松下伺服電機的轉動慣量的比值,或者說同樣額定輸出力矩(同樣額定輸出功率)的電機的轉動慣量的大小。松下伺服電機一般選擇小慣量的松下伺服電機以滿足較高的動態(tài)響應。下面請跟隨小編一起去探討一下:1、松下伺服電機發(fā)熱低、高效率。當然根據(jù)松下伺服電機的具體應用環(huán)境,也可以選擇中慣量,高慣量的松下伺服電機,比如松下伺服電機作為主軸,對于快速響應的要求不那么高的時候,但對速度控制要求非常確,并且經(jīng)常要求運行在低速低頻狀態(tài)下,還要求能夠有編碼器信號輸出的時候。而這個時候變頻器卻不能勝任。
2、松下伺服電機飛車的問題?
答:松下伺服電機飛車這種現(xiàn)象比較常見,也的確非常危險,關于松下伺服電機飛車的問題主要是四個方面的經(jīng)驗。是因為外界干擾引起的松下伺服電機高速運轉,這種情況都是伺服驅動器為位置脈沖控制方式,主要因為外部接線問題(如接屏蔽,接地等等)和驅動器內部的位置指令濾波參數(shù)設置問題而引起,這樣的情況在繡花機,彈簧機上經(jīng)常碰到,這種情況姑且也稱為飛車。第二是松下伺服電機的編碼器零偏(encoder offset)而引起的飛車,究其實質是編碼器零位錯誤導致的飛車。松下A5伺服馬達與以往的伺服馬達產品相比,A5伺服馬達在優(yōu)勢上又更顯一籌。第三是伺服驅動器進行全閉環(huán)控制時,位置環(huán)編碼器故障導致的飛車。編碼器損壞造成的飛車,質上是因為伺服系統(tǒng)沒有位置反饋信號,所以伺服系統(tǒng)的位置偏差是無窮大,從而位置環(huán)輸出的速度指令將是無窮大,于是伺服系統(tǒng)將以速度限制值進行高速旋轉,形成飛車;第四種情況則是位置環(huán)編碼器的接線錯誤,具體的就是信號A,A-的接線顛倒導致的。為什么出現(xiàn)這種情況呢,因為位置環(huán)編碼器的接線一般是A,A-,B,B-,如果A,A-(或B,B-)信號接反的話,則形成正反饋,正反饋的后果就是必然導致飛車;第伍是位置偏差沒有清除而導致的飛車,這種情況主要是發(fā)生在伺服驅動器位置脈沖指令控制下,并且伺服驅動器進行了力矩限制,力矩限制住后不能有效推動負載,導致位置偏差不斷的累積,當解除力矩限制后,伺服系統(tǒng)急于去消除該偏差,以大加速度去運行,從而導致飛車,當然這種飛車不會持久,很快就會報警驅動器故障。
3、為什么松下伺服驅動器加上使能后,所連接的松下伺服電機的軸用手不能轉動?
答:以伺服驅動器處于位置控制方式為例。五、應用不同由于變頻器和伺服在性能和功能上的不同,所以應用也不大相同:1)在速度控制和力矩控制的場合要求不是很高的一般用變頻器,也有在上位加位置反饋信號構成閉環(huán)用變頻進行位置控制的,精度和響應都不高。運用自動控制的基本原理就可以進行解釋。因為伺服驅動器加上使能后,整個閉環(huán)系統(tǒng)就開始工作了,但這個時候松下伺服系統(tǒng)的給定卻為零,假定伺服驅動器處于位置控制方式的話,那么位置脈沖指令給定則為零,如果用手去轉動電機軸的話,相當于外部擾動而產生了一個小的位置反饋,因為這個時候的位置脈沖指令給定為零,所以就產生了一個負的位置偏差值,然后該偏差值與伺服系統(tǒng)的位置環(huán)增益的乘積就形成了速度指令給定信號,然后速度指令給定信號與內部的電流環(huán)輸出了力矩,這個力矩就帶動電機運轉試圖來消除這個位置偏差,所以當人試圖去轉動電機軸的時候就感覺轉動不了。
4、松下伺服驅動器制動電阻選擇的問題?
答:制動電阻的問題,這是個大問題。當然從工程的角度來講,因為有些東西無法準確的計算,為安全起見,對于頻繁啟動停止,頻繁正反轉的場合,可以簡單的用能量守恒原理來進行計算。而對于制動電阻的阻值選擇的一般規(guī)律是制動電阻的阻值不能夠太大,也不能夠太小,而是有一個范圍的。編碼器損壞造成的飛車,質上是因為伺服系統(tǒng)沒有位置反饋信號,所以伺服系統(tǒng)的位置偏差是無窮大,從而位置環(huán)輸出的速度指令將是無窮大,于是伺服系統(tǒng)將以速度限制值進行高速旋轉,形成飛車。如果阻值太大的話,簡單點說,假如是無窮大的話,相當于制動電阻斷開,制動電阻不起制動的作用,伺服驅動器還是會報警過電壓;如果阻值太小的話,則制動的時候通過該電阻的電流就將非常大,流過制動功率管的電流也會非常大,會將制動功率管燒毀,而制動功率管的額定電流一般是等同于驅動管的,所以制動電阻的小值是不應當?shù)陀?10/伺服驅動器的額定電流的(假定伺服驅動器是三相380V電壓輸入)。另外制動電阻分為兩種:鋁合金制動電阻和波紋制動電阻。當然網(wǎng)上資料說兩種制動電阻各有優(yōu)劣,但是我想對于一般的工程應用應該是都可以的。另外對于變頻器的制動電阻的選擇原理上與伺服驅動器是相似的。
5、松下伺服驅動器電子齒輪比的設置的問題?
答:這里首先要區(qū)分伺服的控制方式,當然這里假定伺服是以接受脈沖的方式來控制的(伺服如果以總線的方式來控制的話,伺服驅動器就不用設置電子齒輪比了,但是在上位系統(tǒng)中卻會有另外一個東西需要設置,這個東西就是脈沖當量,本質上和伺服驅動器的電子齒輪比是一回事),然后還有伺服是位置控制方式還是速度控制方式或力矩控制方式的問題,如果伺服是速度控制方式或力矩控制方式的話,顯然電子齒輪比的設置就失去了意義。也就是說電子齒輪比的設置僅在位置控制方式的時候才有效。現(xiàn)有些變頻也接受脈沖序列信號控制速度的,但好象不能直接控制位置。還有個問題就是伺服是作為直線軸還是作為旋轉軸來使用。對于繡花機來說,X軸,Y軸,M軸,SP軸都是直線軸,因為大豪上位認為是1000個脈沖為一轉,所以對于這些軸的電子齒輪比的設置實際上是機械減速比與8的乘積,而對于D軸,H軸來說,則是旋轉軸,大豪上位認為8000個脈沖對應360度,所以電子齒輪比設置為8000/360=200/9。對于彈簧機各軸來說,其實也存在直線軸和旋轉軸的問題,比如凸輪軸,螺距軸,切刀軸就是旋轉軸,而送線軸則是直線軸,不過實際上在伺服驅動器里電子齒輪比一般設置為1/1,而將電子齒輪比的功能的設置放在彈簧機上位上進行,當然在彈簧機上位里換了個叫法,叫著解析度,解析度分子的計算,旋轉軸(凸輪軸,螺距軸,切刀軸)=360乘以100,直線軸(送線軸)=圓周率乘以直徑乘以100;解析度分母的計算:伺服馬達編碼器的分辨率*信號倍率*齒輪比。
淺談松下伺服電機的維護小技巧
松下伺服電機是指在伺服系統(tǒng)中控制機械元件運轉的發(fā)動機。是一種補助馬達間接變速裝置??墒箍刂扑俣?,位置精度非常準確。將電壓信號轉化為轉矩和轉速以驅動控制對象,那么大家可否知道松下伺服電機的維護小技巧呢?下面就趕緊來看看吧。
松下伺服電機的維護知識:
一、在更換伺服電機齒輪時,用戶必須使用陶瓷系潤滑油,不要使用礦物系潤滑油,以免造成塑膠齒輪變質,容易斷裂。
二、善用避振墊圈來保護伺服電機,安裝伺服電機時不可過度鎖緊,造成避振墊圈變形。無防水防塵的電機,請避免讓水或塵土跑進機器內。
三、不要隨意改變電源電壓,例如接收機用 4.8V,請勿為了提升伺服電機的性能而改用 6.0V 避免伺服電機過度負載,依照工作的性質與擺臂的長度,決定扭力的大小。
四、根據(jù)環(huán)境條件和使用方法,零部件更換期限也有所不同,發(fā)生異常時有必要更換和修理零部件,同時你也可以去載松下伺服電機的相關資料。
以上就是小編跟您所分享的松下伺服電機的維護小技巧 的相關知識,希望能夠幫助到您。
松下伺服馬達無“自轉”現(xiàn)象和快速響應的性能
為了使松下伺服馬達具有比較寬的調速范圍、線性的機械特性,無“自轉”現(xiàn)象和快速響應的性能,它與普通電動機相比,應具有轉子電阻大和轉動慣量小這兩個特點。下面我們一起來看下伺服馬達速度和位置模式有什么區(qū)別呢?
伺服馬達速度:
1.如果您對伺服馬達的速度、位置都沒有要求,只要輸出一個恒轉矩,當然是用轉矩模式。
2.如果對位置和速度有一定的精度要求,而對實時轉矩不是很關心,用轉矩模式不太方便,用速度或位置模式比較好。
3.如果上位控制器有比較好的閉環(huán)控制功能,用速度控制效果會好一點。如果本身要求不是很高,或者,基本沒有實時性的要求,用位置控制方式對上位控制器沒有很高的要求。
伺服馬達位置模式:
就松下伺服馬達的響應速度來看,轉矩模式運算量小,伺服馬達驅動器對控制信號的響應快。位置模式運算量大,驅動器對控制信號的響應慢。
1、位置控制:
位置控制模式一般是通過外部輸入的脈沖的頻率來確定轉動速度的大小,通過脈沖的個數(shù)來確定轉動的角度。由于位置模式可以對速度和位置都有很嚴格的控制,所以一般應用于定位裝置。
2、轉矩控制:
轉矩控制方式是通過外部模擬量的輸入或直接的地址的賦值來設定伺服馬達軸對外的輸出轉矩的大小,可以通過即時的改變模擬量的設定來改變設定的力矩大小,也可通過通訊方式改變對應的地址的數(shù)值來實現(xiàn)。
伺服馬達是一個典型閉環(huán)反饋系統(tǒng),減速齒輪組由電機驅動,其終端帶動一個線性的比例電位器作位置檢測,該電位器把轉角坐標轉換為一比例電壓反饋給控制線路板,控制線路板將其與輸入的控制脈沖信號比較,產生糾正脈沖,使齒輪組的輸出位置與期望值相符,令糾正脈沖趨于為0,從而達到使伺服馬達準確定位的目的。經(jīng)過整流好的三相電或市電,再通過三相正弦PWM電壓型逆變器變頻來驅動交流伺服電機。