【廣告】
人工智能控制器
與驅(qū)動(dòng)器的特性無關(guān)。現(xiàn)在沒有使用人工智能的控制算法對特定對象控制效果十分好,但對其他控制對象效果就不會一致性地好,因此對必須具體對象具體設(shè)計(jì)。它們對新數(shù)據(jù)或新信息具有很好的適應(yīng)性。它們能解決常規(guī)方法不能解決的問題。它們具有很好的抗噪聲干擾能力。它們的實(shí)現(xiàn)十分便宜,特別是使用小配置時(shí)。 它們很容易擴(kuò)展和修改。
人工智能技術(shù)控制器
誤差反向傳播技術(shù)性是雙層前聵ANN常見的學(xué)技術(shù)。假如互聯(lián)網(wǎng)有充足多的隱藏層和隱藏結(jié)點(diǎn)及其適合的激勵(lì)函數(shù),雙層ANN只有完成必須的投射,沒有立即的技術(shù)性挑選佳隱藏層、結(jié)點(diǎn)數(shù)和激勵(lì)函數(shù),一般用嘗試法處理這個(gè)問題,反向傳播訓(xùn)煉優(yōu)化算法是基本上的更快降低法,輸出結(jié)點(diǎn)的誤差意見反饋回互聯(lián)網(wǎng),用以權(quán)重值調(diào)節(jié),檢索佳。
但都沒有使用人工智能技術(shù)。相信使用人工智能的直流傳動(dòng)技術(shù)能得到進(jìn)一步的提高。智能技術(shù)在電氣傳動(dòng)技術(shù)中占相當(dāng)重要的地位,特別是自適應(yīng)模糊神經(jīng)元控制器在性能傳動(dòng)產(chǎn)品中將得到廣泛應(yīng)用。但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實(shí)際應(yīng)用的例子(學(xué)術(shù)研究組實(shí)現(xiàn)少,工業(yè)運(yùn)用的就更少了),大多數(shù)研究只給出了理論或結(jié)果
能模仿人的決策和推理模糊控制行為。反模糊化實(shí)現(xiàn)量化和反模糊化。有很多反模糊化技術(shù),例如,大化反模糊化,中間平均技術(shù)等。輸出結(jié)點(diǎn)的權(quán)重調(diào)整迭代不同于隱藏結(jié)點(diǎn)的權(quán)重調(diào)整迭代。通過使用反向傳播技術(shù),能得到需要的非線性函數(shù)近似值,該算法包括有學(xué)習(xí)速率參數(shù),對網(wǎng)絡(luò)的特性有很大影響。些模糊控制器不僅用來取代常規(guī)的PI或PID控制器,同時(shí)也用于其他任務(wù)