【廣告】
粉末微注射成形技術(shù)
近年來,微系統(tǒng)技術(shù)在各個領(lǐng)域的發(fā)展非常迅速,同時也對應(yīng)用于微型工程中的三維微型復(fù)雜元器件的制造提出了更高的要求,希望微型器件在具備滿足使用要求性能的同時,能夠?qū)崿F(xiàn)規(guī)?;a(chǎn)。微系統(tǒng)中主要的元器件包括微型模具、用于傳感器和jia速器上的微型機械結(jié)構(gòu)、生物傳感器、微型流體元件、微型反應(yīng)器等。這些元器件形狀復(fù)雜、體積微小,采用現(xiàn)有的微型加工技術(shù)如微型切削、激光切削、硅刻蝕技術(shù)等,生產(chǎn)效率低,無法開展大規(guī)模生產(chǎn),而近年來在粉末注射成形基礎(chǔ)上發(fā)展起來的粉末微注射成形工藝為實現(xiàn)微型元器件規(guī)?;a(chǎn)提供了zui具潛力的制備技術(shù)。技術(shù)特點:拉絲處理可使金屬表面獲得非鏡面般金屬光澤,同時拉絲處理也可以消除金屬表面細(xì)微的瑕疵。
粉末微注射成形技術(shù)是指針對尺寸小于1微米的零件在傳統(tǒng)粉末注射成形技術(shù)基礎(chǔ)上所開發(fā)的一種成形技術(shù),主要應(yīng)用于連續(xù)制造具有微觀結(jié)構(gòu)表面與微型結(jié)構(gòu)的零件,其基本工藝步驟與傳統(tǒng)的粉末注射成形基本相同,所制備零件的表面質(zhì)量與孔隙度可通過選擇原始粉末與適宜的燒結(jié)條件來控制。與傳統(tǒng)粉末注射成形不同的是,粉末微注射成形為了便于制造微小結(jié)構(gòu),所選擇的粉末平均粒徑一般小于1~2微米;其次,由于粉末比表面積增大,需要粘度較低但有足夠強度的粘結(jié)劑,以利于微注射成形并避免生坯件脫模時損壞。另外,為了防止變形、裂紋及氣泡的產(chǎn)生,微注射成形技術(shù)對脫脂和燒結(jié)的工藝條件更加苛刻。說到喂料生產(chǎn)就不得不提混煉,混煉是喂料生產(chǎn)的第1步,它是使金屬粉末表面包覆一層粘結(jié)劑,使得金屬粉末和粘結(jié)劑組成均勻一致混合料的過程。
目前,國際上開展該技術(shù)研究的主要國家有德國、日本、新加坡、美國和英國。其中,德國開展并取得了突出的成果。國內(nèi)的北京科技大學(xué)、中南大學(xué)以及大連理工大學(xué)也在該領(lǐng)域進行了一系列研究工作。如北京科技大學(xué)研制了具有自主知識產(chǎn)權(quán)、適用于傳統(tǒng)注射成形機的粉末微注射成形用模具;并以羰ji鐵粉和鐵鎳合金粉為原料,在傳統(tǒng)注射成形機上成功實現(xiàn)了粉末微注射成形齒頂圓直徑小于1毫米的微型齒輪。由于壓制和模具上的原因,一般不適宜生產(chǎn)蝸輪、人字形齒輪和螺旋角大于35°的斜齒輪。
多組分材料復(fù)合注射成型技術(shù)
單一化學(xué)成分材料制成的零件很難滿足現(xiàn)代制造業(yè)對零件功能復(fù)合集成化的各種特殊要求,一個零件的不同部位采用不同材料制造,滿足不同功能要求是現(xiàn)代零件制造的一個發(fā)展趨勢。
塑料工業(yè)中廣泛應(yīng)用的雙色(多色)注射成型技術(shù)引入金屬的注射成型領(lǐng)域,使得批量化高效治區(qū)精密復(fù)雜金屬或陶瓷復(fù)合材料成為可能。
復(fù)合注射成型技術(shù)的原理是一臺注射機同時裝有兩套或多套料筒,每套料筒中的注射料各部相同。多腔模具定模可以圍繞轉(zhuǎn)軸旋轉(zhuǎn),在每個位置是不同型腔同時注入不同的注射料。zui初的注射坯留在最里邊,冷卻后開模,但并不馬上脫模。定模旋轉(zhuǎn)到一定角度后,定模合模,整個型腔相對于di一次注射坯料向外擴張,隨后進行第二次不同注射料的注射成型。每個零件經(jīng)過多次注射而成,最后脫模頂出。粉末冶金齒輪是各種汽車發(fā)動機中普遍使用的粉末冶金零件,雖然在大批量的情況下是非常經(jīng)濟實用的,不過在其他方面也有待改進的地方。
多組分材料復(fù)合注射成型技術(shù)的引入,可以滿足單體零件功能、性能集成復(fù)合化及節(jié)省貴重原材料、降低成本的要求。
復(fù)合技術(shù)在許多領(lǐng)域有廣泛的應(yīng)用前景,例如鋼-硬質(zhì)合金或陶瓷切削刀具、沉淀硬化不銹鋼-鐵鋁合金噴油嘴、磁性與非磁性電子元件等已經(jīng)獲得成功應(yīng)用。
粉末冶金MIM工藝相比傳統(tǒng)精鑄工藝的優(yōu)勢
MIM使用的原料粉末粒度直徑為2—15urn,而傳統(tǒng)粉末冶金(PM)的原料粉末粒度為50—100urn。MIM工藝的成品密度高,原因是使用微細(xì)粉末。MIM產(chǎn)品形狀自由度是PM所不能達(dá)到的。
傳統(tǒng)的精密鑄造(IC)工藝作為一種制作復(fù)雜形狀產(chǎn)品極有效的技術(shù),近年使用陶心輔助可以完成狹縫、深孔穴的產(chǎn)品,但礙于陶心的強度以及鑄液的流動性限制,該工藝仍有某些技術(shù)上的難題。一般而言,此工藝制造大、中型零件較為合適,而小型復(fù)雜零件則MIM工藝較為合適,而且IC工藝材質(zhì)受到一定限制。六、粉末噴涂(Powdercoating)粉末噴涂:是用噴粉設(shè)備(靜電噴塑機)把粉末涂料噴涂到工件的表面,在靜電作用下,粉末會均勻的吸附于工件表面,形成粉狀的涂層。
壓鑄工藝適用于鋁和鋅合金等低熔點、鑄流性好的材料,而MIM工藝適合各種材質(zhì)。
精密鍛造可以成型復(fù)雜零件,但不能成型三維復(fù)雜的小型零件,其產(chǎn)品的精度低,產(chǎn)品有局限。
傳統(tǒng)機械加工法:近來靠自動化和數(shù)控提升加工能力,在效率和精度上有很大的進展,但是基本的程序上仍脫不開逐步加工車、刨、銑、磨、鉆、拋等完成零件形狀的方式,機械加工的方法精度和復(fù)雜度遠(yuǎn)優(yōu)于其他方法,但是因為材料的有效利用率低,且形狀的完成受限于設(shè)備與刀具,有些零件無法用機械加工完成。相反,MIM可以有效利用材料,形狀自由度不受限制。對于小型、復(fù)雜、高難度形狀的精密零件的制造,MIM工藝比較機械式加工而言,其成本較低且效率高,具有競爭力。5倍,同時考慮到齒輪高度縱向密度的均勻性,因此粉末冶金齒輪的厚度也是很重要的。