【廣告】
本文列舉了烘干風機靜音扇葉,說明了S1流面優(yōu)化設計在風機詳細設計過程中的作用。根系頂部三個橫截面的流入條件不同,如表3所示。根部設計點的進口氣流角較大,烘干風機工作范圍不同于其它兩段。由于轉子葉片泄漏流的影響,頂部馬赫數(shù)較小,工作范圍較大。采用多島遺傳算法進行優(yōu)化,種群44,孤島7,代數(shù)7。三個截面共優(yōu)化了22個葉片型線參數(shù),包括較大厚度位置、安裝角度、中弧控制點、吸入面控制點等。當優(yōu)化后的葉片型線三維疊加時,烘干風機葉片上半部分略微向后彎曲,可能導致優(yōu)化后的定子葉片損失增加。將優(yōu)化后的靜葉恢復到級環(huán)境中,得到了三維數(shù)值模擬結果。在設計點流量下,靜葉吸力面邊界層變薄,堵塞面積減小。計算了級間環(huán)境下兩葉型風機特性線和兩定子葉片變攻角特性線。從圖17可以看出,定子葉片損失減小,裕度增大,這與不同截面的S1流面性能分析結果相似。但由于烘干風機氣流角的匹配問題,級效率沒有明顯提高,之間失速裕度由27.1%提高到34.9%。針對葉片高度方向的不均勻進口流動情況,在詳細設計中采用了端部彎曲技術來匹配定、轉子葉片之間的流動角。
當烘干風機葉頂間隙形狀發(fā)生變化時,不可避免地會引起葉頂及其附近的吸力面和壓力面流場的分布。由于葉尖間隙的存在,泄漏流將與通道內(nèi)的主流混合,在吸入面頂角形成泄漏旋渦。烘干風機與方案3相比,方案2具有幾乎相同的區(qū)范圍,糧食烘干風機,但葉尖間隙較大,有利于防止動靜部件之間的摩擦,而方案6具有明顯的性能退化,易于分析其損耗機理。為此,分析了三種葉尖間隙:均勻間隙、方案2和方案6。旋渦是描述旋渦運動的重要特征量,烘干風機,其大小可以反映旋渦的強度。在間隙均勻的情況下,渦量分布從葉片前緣到后緣呈下降趨勢,流入量能有效地粘附在吸力面上,因此烘干風機渦量相對較小。由于主流與泄漏流的相互作用,葉片頂端的渦度比吸力面大得多,山東烘干風機,較大渦度出現(xiàn)在吸力面拐角處和葉片頂端附近。中間葉片頂部渦度強度明顯增大,這是由于間隙收縮導致葉片前緣泄漏面積增大,導致泄漏流量增大,主流與泄漏流量的混合程度增大,渦度強度增大。烘干風機葉尖間隙的大小沿流動方向減小,即葉片葉尖越靠近殼體,泄漏旋渦越靠近葉片上部和中部。副作用減少。
根據(jù)以往對烘干風機亞音速定子葉片的研究,前緣彎曲用于匹配迎角[20],根部彎曲高度為20%,煙草烘干風機,端部彎曲角度為20,頂部彎曲高度為30%,端部彎曲角度為40,如圖18左側所示。彎曲高度和彎曲角度的選擇是基于流入流的流動角度條件:如圖5中藍色箭頭所示,定子葉片的流入角度受上游動葉片的影響,靠近端壁有兩個不符合主流分布趨勢的區(qū)域,而彎曲高度末端彎板的T應覆蓋與流動角度匹配的區(qū)域;末端彎板角度的選擇基于區(qū)域和主流流動角度之間的差異。
根據(jù)前面的研究,烘干風機前緣彎曲的定子葉片可以有效地消除流入攻角,但葉片的局部端部彎曲會導致葉片局部反向彎曲的形狀效應。在保證端部攻角減小的同時,定子葉片端部的阻塞量增大,損失增大。在端部彎曲建模的基礎上,適當疊加葉片正彎曲建模,可以減小端部攻角,保證定子葉片和級間的有效流動。通過實驗設計的方法,得到了合適的前彎參數(shù):烘干風機彎曲高度60%,輪轂彎曲角度40,翼緣彎曲角度20,基本符合以往研究得出的彎曲葉片設計參數(shù)選擇規(guī)則。不同葉柵的吸力面徑向壓力梯度和出口段邊界層邊界的徑向壓力梯度可以很好地進行比較。在帶端彎和正彎葉片的三維復合葉片表面,存在兩個明顯的徑向壓力梯度增大區(qū)域,形成從端彎到流道中徑的徑向力,引導烘干風機葉片表面邊界層的徑向重排。從出口段附面層的邊界形狀可以看出,復合三維葉片試圖使葉片的徑向附面層均勻化,消除了葉片角部區(qū)域的低能流體積聚,對提高葉片邊緣起到了明顯的作用。
企業(yè): 山東冠熙環(huán)保設備有限公司
手機: 15684302892
電話: 0536-3690068
地址: 山東省臨朐縣223省道與南環(huán)路交叉口往南2公里路西