【廣告】
1.概述
通常,人們把含鉻量>12%或含鎳量>8%的合金鋼稱為不銹鋼。這種鋼在大氣中或在腐蝕性介質中具有一定的耐腐蝕能力,并在較高溫度(>450℃)下具有較高的強度。含鉻量達16%~18%的鋼,稱為耐酸鋼或耐酸不銹鋼,通稱為不銹鋼。
含鉻量達12%以上的鋼在與氧化性介質接觸時,由于電化學作用,表面形成一層富鉻氧化膜,可保護金屬內部不受腐蝕。但在非氧化性腐蝕介質中,不能形成堅固的鈍化膜。為提高鋼的耐腐蝕能力,通常選擇增大鉻的比例或添加可促進鈍化的合金元素,如添加Ni、Mo、Mn、Cu、Nb、Ti、W和Co等。這些合金元素不僅提高了鋼的抗腐蝕能力,同時改變了鋼的內部組織和物理力學性能。其在鋼中的含量不同,對不銹鋼性能產生的影響不同,有的有磁性,有的則無磁性,有的能夠進行熱處理,有的則不能進行熱處理。
不銹鋼被越來越廣泛地應用于航空、航天、化工、石油、建筑以及食品機械行業(yè)中。其所含的合金元素對切削加工性能影響較大,文中主要對不銹鋼的切削加工進行了分析。
2.不銹鋼的分類及性能
(1)按不銹鋼主要成分,分為以鉻為主的鉻不銹鋼和以鉻、鎳為主的鉻鎳不銹鋼兩大類。
(2)按不銹鋼金相組織分類:①馬氏體不銹鋼。其含鉻量為12%~18%,含碳量為0.1%~0.5%(有時達1%)。其硬度為170~217HBW,抗拉強度σb為540~1 079MPa,伸長率δ為10%~25%,熱導率к為25.12W/(m·K)。常見的牌號有1Cr13、2Cr13、3Cr13、4Cr13、1Cr17Ni2、9Cr18、9Cr18MoV和30Cr13Mo等。馬氏體不銹鋼通過淬火,可獲得較高的硬度、強度和耐磨性。然而,當鋼中含碳量低于0.3%時,組織不均勻,粘附性強,切削時易產生積屑瘤,且斷屑困難,切削加工性較差。當含碳量達0.4%~0.5%時,切削加工性較好。②鐵素體不銹鋼。其含鉻量為12%~13%。硬度為177~228HBW,抗拉強度σb為363~451MPa,伸長率δ為20%~22%,熱導率к為16.7W/(m·K)。加熱冷卻時組織穩(wěn)定,不發(fā)生相變,所以不能進行熱處理強化,只能靠變形強化,切削加工性相對較好。常見的牌號有0Cr13、0Cr17Ti、0Cr13Si4NbRe、1Cr17、1Cr17Ti、1Cr17Mo2Ti、1Cr28以及1Cr25Ti等。③奧氏體不銹鋼。其含鉻量為12%~25%,含鎳量為7%~20%(或20%以上)。硬度為187~207HBW,抗拉強度σb為481~520MPa,伸長率δ為40%,熱導率к為16.33W/(m·K)。典型牌號有1Cr18Ni9Ti,其他還有00Cr18Ni10、0Cr18Ni12Mo2Ti、0Cr18Ni18Mo2Cu2Ti、1Cr14Mn14Ni、2Cr13Mn9Ni4以及1Cr18Mn8Ni5N等。由于奧氏體不銹鋼含有較多的鎳或錳,加熱時組織不變,故淬火不能使其強化,可通過冷加工硬化來大幅度提高強度和硬度,其硬化程度為基體硬度的1.4~2.2倍,給下一次切削帶來很大困難。其具有優(yōu)良的力學性能和良好的耐腐蝕能力,無磁性。④奧氏體-鐵素體雙相不銹鋼。與奧氏體不銹鋼相似,僅在組織中含有一定量鐵素體,常見牌號有0Cr21Ni5Ti、1Cr21Ni5Ti、1Cr18Mn10Ni5Mo3N、0Cr17Mn13Mo2N、1Cr17Mn9Ni3Mo3Cu2N、Cr26Ni17Mo3CuSiN以及1Cr18Ni11Si4AlTi等。這類不銹鋼有硬度極高的金屬間化合物析出,強度比奧氏體不銹鋼高,切削加工性能比奧氏體不銹鋼更差。其硬度<277HBW,抗拉強度σb為589~736MPa,伸長率δ為18%~30%。⑤沉淀硬化不銹鋼。這類不銹鋼因含有較高的鉻、鎳和極低的碳,還含有能起沉淀硬化作用的、鋁、鈦和鉬等合金元素,其在回火時析出,產生沉淀硬化,具有很高的硬度和強度。其硬度為363~388HBW,抗拉強度σb為1 138~1 324MPa,伸長率δ為5%~10%,這類鋼具有良好的耐腐蝕性能。常見牌號有0Cr17Ni4Cu4Nb、0Cr17Ni7Al和0Cr15Ni7Mo2Al等。
3.不銹鋼的切削特點
不銹鋼的切削加工性能比45鋼差。若以45鋼的相對切削加工性Kr為1,則奧氏體不銹鋼的相對切削加工性Kr為0.4,鐵素體不銹鋼的Kr為0.48,馬氏體不銹鋼的Kr為0.55。其中以奧氏體和奧氏體-鐵素體雙相不銹鋼的切削加工性差,給切削加工帶來很大困難,其特點如下:
(1)切削加工硬化嚴重。以奧氏體和奧氏體 鐵素體不銹鋼的加工硬化現(xiàn)象為嚴重,硬化層的硬度比基體硬度高1.4~2.2倍,其抗拉強度σb為1 470~1 960MPa。這類不銹鋼塑性大(δ>35%),塑性變形時晶格扭曲,故強化系數大,且奧氏體不穩(wěn)定,在切削力作用下,部分奧氏體轉變?yōu)轳R氏體。
(2)切削力大。不銹鋼的高溫強度和硬度高且韌性大,故在切削時所消耗的能量大,即切削抗力大。以奧氏體不銹鋼為例,在切削過程中溫度高達700℃時,其綜合力學性能高于一般結構鋼。加之其在切削過程中的塑性變形大、硬化現(xiàn)象嚴重,增大了切削力,所以不銹鋼的單位切削力為45鋼單位切削力的1.25倍。
(3)切削溫度高。由于不銹鋼在切削時的塑性變形大,切屑與刀具間的摩擦大,加之其熱導率僅為45鋼熱導率的1/3~1/4,散熱條件差,大量切削熱集中在切削區(qū),在相同切削條件下,切削溫度比切削45鋼時高200℃。
非晶合金涂層在加工刀具上的應用
近年來,跟著研討的不斷深入,加工技能高質量、低能耗的特色逐漸受到重視,并在航空航天范疇得到廣泛應用。加工技能包括加工機床、加工刀具和加工工藝等方面。《非晶中國工業(yè)開展咨詢》主要從加工刀具的資料涂層技能方面進行介紹,給非晶態(tài)合金應用提供新的方向和思路。
加工及對刀具的高要求
加工(High PerformanceMachining,HPM)是在保證零件精度和質量的前提下,經過對加工進程的優(yōu)化和進步單位時刻資料切除量來進步加工功率和設備利用率、下降生產成本的一種高功能加工技能。在加工體系中,刀具是完成切削加工的工具,直觸摸摸工件并從工件上切去一部分資料,使工件得到契合技能要求的形狀、尺度精度和外表質量。在整個加工進程中,刀具直接與工件觸摸,會呈現(xiàn)嚴峻的刀具磨損現(xiàn)象,因而刀具也是加工進程中的一大消耗品。刀具技能的內涵包括刀具資料技能、刀具結構設計和成形技能、刀具外表涂層技能等,也包含了上述單項技能歸納交叉形成的高速刀具技能、刀具可靠性技能、綠色刀具技能、智能刀具技能等。刀具作為機械制作工藝配備中重要的一類基礎部件。
刀具在切削進程中承受深重的負荷,包括高的機械應力、熱應力、沖擊和振蕩等,如此惡劣的工作條件對刀具功能提出了高要求。挑選刀具資料、設計刀具結構、開展刀具涂層和高功能刀具技能成為進步切削加工水平的關鍵環(huán)節(jié)。《非晶中國工業(yè)開展咨詢》主要從刀具涂層技能等方面對刀具進行介紹,以促進先進刀具的開發(fā),為進步制作技能水平發(fā)揮應有的效果。
加工刀具的外表涂層
刀具外表涂層以增效和延壽為目的,是將耐高溫、耐磨損的資料涂覆在刀具基體資料外表。涂層作為一個化學屏障和熱屏障,減少了刀具與工件間的擴散和化學反應,從而減少了刀具的月牙槽磨損。涂層刀具具有外表硬度高、耐磨性好、化學功能穩(wěn)定、耐熱耐氧化、摩擦因數小和熱導率低一級特性?,F(xiàn)在,常用的刀具涂層辦法有化學氣相堆積法(CVD)、物理氣相堆積法(PVD)、等離子體化學氣相堆積法(PCVD)、熱噴涂法和離子束輔助堆積法(IBAD),其中以PVD和CVD應用為廣泛。
刀具的涂層技能現(xiàn)在現(xiàn)已成為進步刀具功能的關鍵技能。在涂層工藝方面,CVD依然是可轉位刀片的主要涂層工藝,在基體資料改進的基礎上,使CVD涂層刀具的耐磨性和韌性都得到進步。PVD相同取得了重大進展,開發(fā)了習慣高速切削、干切削、硬切削的耐熱性更好的涂層,如納米、多層結構等。等離子體化學氣相堆積法(PCVD)是將高頻微波導人含碳化物氣體發(fā)生高頻高能等離子,或者經過電極放電發(fā)生高能電子使氣體電離成為等離子體,由氣體中的活性碳原子或含碳基團在合金的外表堆積的一種涂層制備辦法。
非晶合金涂層的優(yōu)勢
刀具涂層技能向物理涂層附加大功率等離子體方向開展;功能薄膜向著多元、多層膜的方向開展;并研討集硬度、化學穩(wěn)定性、抗癢化性于一體且具有低內應力和高附著力的薄膜制備技能。圖(a)為多層涂層,其內層的TiCN與基體有較強的結合力和強度,中心的Al2O3,作為一種有用的熱屏障可答應有更高的切削速度,外層的TiCN保證抗前刀面和后刀面磨損才能,外一薄層金黃色的TiN使得容易辨別刀片的磨損狀態(tài);圖(b)中納米涂層與傳統(tǒng)涂層比較,具有超硬度、超模量和高紅硬性效應,并且顯微硬度可超過40GPa;圖(c)納米復合結構涂層在強等離子體效果下,納米TiAlN晶體被鑲
刀具的涂層技能
嵌在非晶態(tài)的Si3N4體內,當AlTiN晶體尺度小于10nm時,位錯增殖源難于啟動,而非晶態(tài)相又可阻撓晶體位錯的遷移,即使在較高的應力下,位錯也不能穿越非晶態(tài)晶界。這種結構薄膜的硬度可以達到50GPa以上,并可堅持適當優(yōu)異的韌性,且當溫度達到900—1100℃時,其顯微硬度仍可堅持在30GPa以上。
CVD和PVD涂層工藝技能和配備水平將得到進一步提升和工業(yè)化。復合、梯度、多層、納米多層、納米非晶態(tài)復合結構涂層及薄膜多元化、個性化、涂層、晶粒大小可控化等功能可定制的涂層(如高速干切削復合涂層技能)將逐漸工業(yè)化。另一方面,針對廢舊刀具回收利用的退涂技能、重涂技能也將由于綠色環(huán)保逐漸得到重視。此外,刀具軟涂層方向的自潤滑刀具作為可以完成干切削、準干式切削(MQL)的技能途徑之一現(xiàn)已受到重視。
非晶合金涂層刀具的前景
刀具的切削功能是刀具資料、幾何結構和涂層相互組合的成果,新資料、立異的結構設計和涂層可以促進刀具功能的改進。我國的刀具制作技能依然與先進國家存在很大的差距,研討刀具技能火燒眉毛,特別是基礎資料和結構立異,需要打破傳統(tǒng)思維,斗膽立異,尋求刀具技能的新出路。
“非晶中國大數據中心”信息標明:我國科學家在刀具上進行非晶態(tài)復合涂層技能攻關,并現(xiàn)已開端在企業(yè)試用,效果得到必定。未來,這將是非晶合金一個值得開發(fā)的高段應用市場。
機械加工開展的總趨勢是高功率、、高柔性和強化環(huán)境意識。在機械加工范疇,切(磨)削加工是運用廣泛的加工辦法。
點擊檢查『 刀具集創(chuàng)始的這個項目,給刀具人幫了大忙』
高速切削是切削加工的開展方向,已成為切削加工的干流。它是先進制造技能的重要共性關鍵技能,推廣運用高速切削技能將大幅度前進出產功率和加工質量并降低成本。
高速切削技能的開展和運用決定于機床和刀具技能的前進,其間刀具資料的前進起決定性的效果。研討表明,高速切削時,跟著切削速度的前進,切削力減小,切削溫度上升很高,達到必定值后上升逐步趨緩。
造成刀具損壞主要的原因是切削力和切削溫度效果下的機械摩擦、粘結、化學磨損、崩刃、破碎以及塑性變形等磨損和破損,因而高速切削刀具資料主要的要求是高溫時的力學功能、熱物理功能、抗粘結功能、化學穩(wěn)定性(氧化性、分散性、溶解度等)和抗熱震功能以及抗涂層決裂功能等。
根據這一要求,近20多年來,開展了一批適于高速切削的刀具資料,可在不同切削條件下,切削加工各種工件資料。雖然咱們總是期望得到既有高的硬度以確保刀具的耐磨性,又有高的耐性來防止刀具的碎裂,但現(xiàn)在的技能開展還沒有找到如此優(yōu)越功能的刀具資料,魚于熊掌無法兼得。
因而,咱們會在實踐中按照需求選用更合適的刀具材科,粗加工時優(yōu)先考慮刀具資料的耐性,精加工時優(yōu)先考慮刀具資料的硬度。當然人們還期待著以超高切削速度進行加工而取得更好的效果。下面僅就常見的工件資料及刀具的相關情況做如下簡單介紹。
鋁合金
01
1.1 易切削鋁合金
該資料在航空航天工業(yè)運用較多,適用的刀具有K10、K20、PCD,切削速度在2000~4000m/min,進給量在3~12m/min,刀具前角為12°~18°,后角為10°~18°,刃傾角可達25°。
1.2 鑄鋁合金
鑄鋁合金根據其Si含量的不同,選用的刀具也不同。
對Si含量小于12%的鑄鋁合金可選用K10、Si3N4刀具,當Si含量大于12%時,可選用PKD(人造金剛石)、PCD(聚晶金剛石)及CVD金剛石涂層刀具。
關于Si含量達16%~18%的過硅呂合金,蕞好選用PCD或CVD金剛石涂層刀具,其切削速度可在1100m/min,進給量為0.125mm/r。
鑄 鐵
02
對鑄件,切削速度大于350m/min時,稱為高速加工,切削速度對刀具的選用有較大影響。當切削速度低于750m/min時,可選用涂層硬質合金、金屬陶瓷;切削速度在510~2000m/min時,可選用Si3N4淘瓷刀具;切削速度在2000~4500m/min時,可運用CBN刀具。鑄件的金相組織對高速切削刀具的選用有必定影響,加工以珠光體為主的鑄件在切削速度大于500m/min時,可運用CBN或Si3N4,當以鐵素體為主時,由于分散磨損的原因,使刀具磨損嚴峻,不宜運用CBN,而應選用淘瓷刀具。
如粘結相為金屬Co,晶粒尺度平均為3?m,CBN含量大于90%~95%的BZN6000在V=700m/min時,宜加工高鐵素體含量的灰鑄鐵。粘結相為陶瓷(AlN AlB2)、晶粒尺度平均為10?m、CBN含量為90%~95%的Amborite刀片,在加工高珠光體含量的灰鑄鐵時,在切削速度小于1100m/min時,隨切削速度的增加,刀具壽數也增加。
一般鋼
03
切削速度對鋼的表面質量有較大的影響,據研討,其蕞佳切削速度為500~800m/min?,F(xiàn)在,涂層硬質合金、金屬陶瓷、非金屬陶瓷、CBN刀具均可作為高速切削鋼件的刀具資料。其間涂層硬質合金可用切削液。用PVD涂層辦法出產的TiN涂層刀具其耐磨功能比用CVD涂層法出產的涂層刀具要好,因為前者可很好地堅持刃口形狀,使加工零件取得較高的精度和表面質量。
金屬淘瓷刀具現(xiàn)在占市場份額較大,以TiC-Ni-Mo為基體的金屬陶瓷化學穩(wěn)定性好,但抗彎強度及導熱性差,適于切削速度在400~800m/min的小進給量、小切深的精加工:用TiCN作為基體、結合劑中少鉬多鎢的金屬陶瓷將強度和耐磨兩者結合起來,用TiN來增加金屬陶瓷的耐性,其加工鋼或鑄鐵的切深可達2~3mm。
高硬度鋼
04
高硬度鋼(HRC40~70)的高速切削刀具可用金屬陶瓷、陶瓷、TiC涂層硬質合金、PCBN等。金屬陶瓷可用基本成分為TiC增加TiN的金屬陶瓷,其硬度和斷裂耐性與硬質合金大致相當,而導熱系數不到硬質合金的1/1O,并具有優(yōu)異的耐氧化性、抗粘結性和耐磨性。
別的其高溫下機械功能好,與鋼的親和力小,適合于中高速(在200m/min左右)的模具鋼SKD加工。金屬陶瓷尤其適合于切槽加工。選用淘瓷刀具可切削硬度達63HRC的工件資料,如進行工件淬火后再切削,實現(xiàn)“以切代磨”。切削淬火硬度達48~58HRC的45鋼時,切削速度可取150~18Om/min,進給量在O.3~0.4min/r,切深可取2~4mm。粒度在1?m,TiC含量在20%~30%的Al203-TiC淘瓷刀具,在切削速度為100m/min左右時,可用于加工具有較高抗剝落功能的高硬度鋼。當切削速度高于1000m/min時,PCBN是蕞佳刀具資料,CBN含量大于90%的PCBN刀具適合加工淬硬工具鋼(如55HRC的H13工具鋼)。
高溫鎳基合金
05
Inconel 718鎳基合金是典型的難加工資料,具有較高的高溫強度、動態(tài)剪切強度,熱分散系數較小,切削時易產生加工硬化,這將導致刀具切削區(qū)溫度高、磨損速度加快。高速切削該合金時,主要運用陶瓷和CBN刀具。碳化硅晶須增強氧化鋁陶瓷在100~300m/min時可取得較長的刀具壽數,切削速度高于500m/min時,增加TiC氧化鋁淘瓷刀具磨損較小,而在100~300m/min時其缺口磨損較大。氮化硅陶瓷(Si3N4)也可用于Inconel 718合金的加工。一般認為,SiC晶須增強陶瓷加工Inconel 718的蕞佳切削條件為:切削速度700m/min,切深為1~2mm,進給量為O.1~0.18mm/z。氦氧化硅呂(Sialon)陶瓷耐性很高,適合于切削過固溶處理的Inconel718(45HRC)合金,Al203-SiC晶須增強陶瓷適合于加工硬度低的鎳基合金。
鈦合金
06
鈦合金強度、沖擊耐性大,硬度稍低于Inconel 718,但其加工硬化十分嚴峻,故在切削加工時出現(xiàn)溫度高、刀具磨損嚴峻的現(xiàn)象。實驗得出,用直徑10mm的硬質合金K10兩刃螺旋銑刀(螺旋角為30°)高速銑削鈦合金,可達到滿意的刀具壽數,切削速度可高達628m/min,每齒進給量可取O.06~0.12mm/z,連續(xù)高速車削鈦合金的切削速度不宜超越200m/min。
復合資料
07
航天用的先進復合資料,以往用硬質合金和PCD,硬質合金的切削速度受到限制,而在900℃以上高溫下PCD刀片與硬質合金或高速剛刀體焊接處熔化,用淘瓷刀具則可實現(xiàn)300m/min左右的高速切削。
高速切削技能已成為切削加工的干流,加快其推廣運用,將會發(fā)明巨大經濟效益。高速切削刀具資料對開展和運用高速切削技能具有決定性效果。超硬刀具資料(PCD與CBN)、淘瓷刀具、TiC(N)基硬質合金刀具(金屬陶瓷)和涂層刀具等四大類高速切削刀具資料各有其特性和運用范圍,它們相互配合,彼此競爭,推進高速切削技能的開展和運用。