【廣告】
人工智能控制器
與驅(qū)動(dòng)器的特性無(wú)關(guān)?,F(xiàn)在沒(méi)有使用人工智能的控制算法對(duì)特定對(duì)象控制效果十分好,但對(duì)其他控制對(duì)象效果就不會(huì)一致性地好,因此對(duì)必須具體對(duì)象具體設(shè)計(jì)。它們對(duì)新數(shù)據(jù)或新信息具有很好的適應(yīng)性。它們能解決常規(guī)方法不能解決的問(wèn)題。它們具有很好的抗噪聲干擾能力。它們的實(shí)現(xiàn)十分便宜,特別是使用小配置時(shí)。 它們很容易擴(kuò)展和修改。
使用常規(guī)反向轉(zhuǎn)波算法的ANN用于步進(jìn)電機(jī)控制算法的優(yōu)化。該方案使用實(shí)驗(yàn)數(shù)據(jù),根據(jù)負(fù)載轉(zhuǎn)矩和初始速度來(lái)確定大可觀測(cè)速度增量。這就需要ANN學(xué)習(xí)三維圖形映射。該系統(tǒng)與常規(guī)控制算法(梯形控制法)相比具有更好的性能,并且大大減少了定位時(shí)間,對(duì)負(fù)載轉(zhuǎn)矩的大范圍變化和非初始速度也有滿意的控制效果。
但都沒(méi)有使用人工智能技術(shù)。相信使用人工智能的直流傳動(dòng)技術(shù)能得到進(jìn)一步的提高。智能技術(shù)在電氣傳動(dòng)技術(shù)中占相當(dāng)重要的地位,特別是自適應(yīng)模糊神經(jīng)元控制器在性能傳動(dòng)產(chǎn)品中將得到廣泛應(yīng)用。但是,還有很多研究工作要做,現(xiàn)在還只有少數(shù)實(shí)際應(yīng)用的例子(學(xué)術(shù)研究組實(shí)現(xiàn)少,工業(yè)運(yùn)用的就更少了),大多數(shù)研究只給出了理論或結(jié)果
總而言之,當(dāng)采用自適應(yīng)模糊神經(jīng)控制器,規(guī)則庫(kù)和隸屬函數(shù)在模糊化和反模糊化過(guò)程中能夠自動(dòng)地實(shí)時(shí)確定。,隨著現(xiàn)代控制理論的發(fā)展,控制器設(shè)計(jì)的常規(guī)技術(shù)正逐漸被廣泛使用的人工智能軟件技術(shù)所替代。不同的人工智能控制通常用完全不同的方法去討論。但AI控制器例如:神經(jīng)、模糊、模糊神經(jīng),以及遺傳算法都可看成一類非線性函數(shù)近似器。