【廣告】
迅速發(fā)展起來的一種解決方案是基于主動近紅外圖像的多光源人臉識別技術(shù)。它可以克服光線變化的影響,已經(jīng)取得了的識別性能,在精度、穩(wěn)定性和速度方面的整體系統(tǒng)性能超過三維圖像人臉識別。這項(xiàng)技術(shù)在近兩三年發(fā)展迅速,使人臉識別技術(shù)逐漸走向?qū)嵱没?
非強(qiáng)制性:用戶不需要專門配合人臉采集設(shè)備,幾乎可以在無意識的狀態(tài)下就可獲取人臉圖像,這樣的取樣方式?jīng)]有“強(qiáng)制性”;非接觸性:用戶不需要和設(shè)備直接接觸就能獲取人臉圖像;
并發(fā)性:在實(shí)際應(yīng)用場景下可以進(jìn)行多個人臉的分揀、判斷及識別;
除此之外,還符合視覺特性:“以貌識人”的特性,以及操作簡單、結(jié)果直觀、隱蔽性好等特點(diǎn)。
人臉圖像采集:不同的人臉圖像都能通過攝像鏡頭采集下來,比如靜態(tài)圖像、動態(tài)圖像、不同的位置、不同表情等方面都可以得到很好的采集。當(dāng)用戶在采集設(shè)備的拍攝范圍內(nèi)時,采集設(shè)備會自動搜索并拍攝用戶的人臉圖像。人臉檢測:人臉檢測在實(shí)際中主要用于人臉識別的預(yù)處理,即在圖像中準(zhǔn)確標(biāo)定出人臉的位置和大小。人臉圖像中包含的模式特征十分豐富,如直方圖特征、顏色特征、模板特征、結(jié)構(gòu)特征及Haar特征等。人臉檢測就是把這其中有用的信息挑出來,并利用這些特征實(shí)現(xiàn)人臉檢測。
主流的人臉檢測方法基于以上特征采用Adaboost學(xué)習(xí)算法,Adaboost算法是一種用來分類的方法,它把一些比較弱的分類方法合在一起,組合出新的很強(qiáng)的分類方法。人臉檢測過程中使用Adaboost算法挑選出一些1能代表人臉的矩形特征(弱分類器),按照加權(quán)投1票的方式將弱分類器構(gòu)造為一個強(qiáng)分類器,再將訓(xùn)練得到的若干強(qiáng)分類器串聯(lián)組成一個級聯(lián)結(jié)構(gòu)的層疊分類器,有效地提高分類器的檢測速度。
生物識別技術(shù)已廣泛用于政府、銀行、社會福利保障、電子商務(wù)、安全防務(wù)等領(lǐng)域。例如,一位儲戶走進(jìn)了銀行,他既沒帶銀行1卡,也沒有回憶密碼就徑直提款,當(dāng)他在提款機(jī)上提款時,一臺攝像機(jī)對該用戶的眼睛掃描,然后迅速而準(zhǔn)確地完成了用戶身份鑒定,辦理完業(yè)務(wù)。這是美國德克薩斯州聯(lián)合銀行的一個營業(yè)部中發(fā)生的一個真實(shí)的鏡頭。而該營業(yè)部所使用的正是現(xiàn)代生物識別技術(shù)中的“虹膜識別系統(tǒng)”。此外,美國“9.11”事件后,反恐活動已成為各國政府的共識,加強(qiáng)機(jī)場的安全防務(wù)十分重要。